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Different surface representations 
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Image segmentation  
Basics 
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Linear (modular) appearance of region 
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Examples of potential functions   
 

• Log-likelihoods 
 
• Chan-Vese 
 
• Ballooning 
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Basic boundary regularization for  
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pair-wise discontinuities 
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Basic boundary regularization for  
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second-order terms 
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Basic boundary regularization for  

{0,1}ps

Examples of discontinuity penalties   
 

• Boundary length 
 
•  Image-weighted  
   boundary length 
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Basic boundary regularization for  

• corresponds to boundary length | | 

– grids [B&K, 2003], via integral geometry 

– complexes [Sullivan 1994] 

• submodular second-order energy 

– can be minimized exactly via graph cuts 
[Greig et al.’91, Sullivan’94, Boykov-Jolly’01]  
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2

any (binary) segmentation energy E(S)  
is a set function E:  S 

Ω 

 
Submodular set functions 



 
Submodular set functions 

Set function                            is submodular if for any 2:E
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Significance: any submodular set function can be  
globally optimized in polynomial time  

[Grotschel et al.1981,88, Schrijver 2000] 
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Submodular set functions 

Set function                            is submodular if for any 2:E
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an alternative equivalent definition providing intuitive interpretation:   “diminishing returns” 
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Significance: any submodular set function can be  
globally optimized in polynomial time  

[Grotschel et al.1981,88, Schrijver 2000] 
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Graph cuts for minimization of 

submodular set functions 

Assume set  Ω  and 2nd-order (quadratic) function 

 Function E(S)  is submodular if for any 
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Significance: submodular 2nd-order boolean (set) function  
can be globally optimized in polynomial time by graph cuts  

[Hammer 1968, Pickard&Ratliff 1973] 
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Combinatorial 
optimization 

Continuous 
optimization 

submodularity convexity 

Global Optimization 

? 



Assume Gibbs distribution over binary random variables 
 

                                                                                       for 

Graph cuts for minimization of 
posterior energy (MRF)                                        
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Theorem  [Boykov, Delong, Kolmogorov, Veksler   in unpublished book 2014?] 
 

All random variables   sp  are positively correlated  iff  set function  E(S)  is submodular 

That is,  submodularity  implies MRF with “smoothness” prior  
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Basic segmentation energy 
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this talk 

Higher-order binary segmentation 

Curvature    (3-rd order) 

Convexity     (3-rd order) 

segment  region/appearance  

Shape priors   (N-th order) 
Connectivity   (N-th order) 

Cardinality potentials      (N-th order) 

Appearance Entropy        (N-th order) 

Color consistency             (N-th order) 

Distribution consistency (N-th order) 

boundary smoothness 



submodular approximations  
[our work: Trust Region 13, Auxiliary Cuts 13] 

global minimum  
[our work: One Cut 2014] 

block-coordinate descent 
[Zhu&Yuille 96, GrabCut 04] 

Overview of this talk 

• From likelihoods to entropy 
 

• From entropy to color consistency 
 

• Convex cardinality potentials  

• Distribution consistency 

• From length to curvature 

 

optimization high-order functionals 

other extensions [arXiv13] 
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assuming known 

[Boykov&Jolly, ICCV2001] 

image segmentation, graph cut 

RGBI p

• parametric models – e.g. Gaussian or GMM 
• non-parametric models - histograms 

}{ 10,ps

pair-wise (quadratic) term unary (linear) term 

Given likelihood models 

guaranteed globally optimal S  



Beyond fixed likelihood models 

[Rother, et al. SIGGRAPH’2004] 

iterative image segmentation, Grabcut 
(block coordinate descent                    ) 

RGBI p

10 ,S

Models  0  , 1   
are iteratively 
re-estimated  

(from initial box) 

extra variables 
• parametric models – e.g. Gaussian or GMM 
• non-parametric models - histograms 
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pair-wise (quadratic) term mixed optimization term 

NP hard mixed optimization!  
[Vesente et al., ICCV’09]  



• Minimize over segmentation S  for fixed 0  , 1  

 

 

 

• Minimize over  0  , 1   for fixed labeling  S 

 

Block-coordinate descent for 

fixed for  S=const 
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Sp0
ˆ Sp1

ˆ

distribution of intensities in 
current bkg. segment     ={p:Sp=0}  

distribution of intensities in 
current obj. segment   S={p:Sp=1}  S

optimal  S  is computed using graph cuts, as in [BJ 2001] 



Iterative learning of color models 
(binary case                   ) 

• GrabCut: iterated graph cuts   [Rother et al., SIGGRAPH 04] 

start from models  0  , 1    
inside and outside some given box   

iterate graph cuts and model re-estimation 
until convergence to a local minimum  
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solution is sensitive to initial box 



BCD minimization of                       converges to a local minimum   )( 10 ,,SE

E=2.37×106 E=2.41×106 E=1.39×106 E=1.410×106 

Iterative learning of color models 
(binary case                   ) }{ 10,ps

(interactivity a la “snakes”) 



Iterative learning of color models 
(could be used for more than 2 labels                           )  

• Unsupervised segmentation [Zhu&Yuille, 1996] 
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}{ ,...,, 210ps

using level sets + merging heuristic 

initialize models  0  , 1 , 2  ,    
from many randomly sampled boxes   

iterate segmentation 
and model re-estimation 

until convergence  

models compete, stable result if sufficiently many 



Iterative learning of color models 
(could be used for more than 2 labels                           )  

• Unsupervised segmentation [Delong et al., 2012] 

|| labels

}{ ,...,, 210ps

using a-expansion (graph-cuts) 

initialize models  0  , 1 , 2  ,    
from many randomly sampled boxes   

models compete, stable result if sufficiently many 

iterate segmentation 
and model re-estimation 

until convergence  
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Iterative learning of other models 
(could be used for more than 2 labels                           )  

• Geometric multi-model fitting [Isack et al., 2012] 

initialize plane models  0  , 1 , 2  ,    
from many randomly sampled SIFT matches 

in 2 images of the same scene 

|| labels

using a-expansion (graph-cuts) 

iterate segmentation 
and model re-estimation 

until convergence  

models compete, stable result if sufficiently many 
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Iterative learning of other models 
(could be used for more than 2 labels                           )  

• Geometric multi-model fitting [Isack et al., 2012] 

initialize Fundamental matrices  0  , 1 , 2  ,    
from many randomly sampled SIFT matches 

in 2 consecutive frames in video 

|| labels

using a-expansion (graph-cuts) 

iterate segmentation 
and model re-estimation 

until convergence  

models compete, stable result if sufficiently many 

VIDEO 
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From color model estimation 
to entropy and color consistency 

 
  global optimization in  One Cut 

 

[Tang et al. ICCV 2013] 



Interpretation of log-likelihoods:  
entropy of segment intensities 
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Interpretation of log-likelihoods:  
entropy of segment intensities 
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10 ,
min

entropy of 
intensities in     S

entropy of 
intensities in     S

minimization of segments entropy 

Note:   H(P|Q)  H(P)  for any two distributions (equality when Q=P) 
cross-entropy     entropy     

joint estimation of S and color models [Rother et al., SIGGRAPH’04, ICCV’09] 

[Tang et al, ICCV 2013] 



Interpretation of log-likelihoods:  
entropy of segment intensities 

)( 10 ,,SE

)( 0||| SHS )( 1||| SHS

10 ,
min

entropy of 
intensities in     S

entropy of 
intensities in     S

binary optimization 

Note:   H(P|Q)  H(P)  for any two distributions (equality when Q=P) 
cross-entropy     entropy     

mixed optimization 

[Tang et al, ICCV 2013] 

[Rother et al., SIGGRAPH’04, ICCV’09] 
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Interpretation of log-likelihoods:  
entropy of segment intensities 
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10 ,
min

entropy of 
intensities in     S

entropy of 
intensities in     S

common energy for categorical clustering, e.g. [Li et al. ICML’04] 

Note:   H(P|Q)  H(P)  for any two distributions (equality when Q=P) 
cross-entropy     entropy     
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Minimizing entropy of segments intensities 
 (intuitive motivation) 
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unsupervised image segmentation (like in Chan-Vese) 

high  entropy segmentation 

break image into two coherent segments  
with low entropy of intensities 

S 

S 

low entropy segmentation 

S 

S S 

S 
S 

S 



more general than Chan-Vese  (colors can vary within each segment) 

S 

S 

S 

S 

break image into two coherent segments  
with low entropy of intensities 

Minimizing entropy of segments intensities 
 (intuitive motivation) 
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From entropy 
to color consistency 

all pixels i

Minimization of entropy encourages  
pixels  i    of the same color bin  i 
to be segmented together 

(proof: see next page) 

i

1
2

4

3

5



From entropy 
to color consistency 
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pixels in each color bin  i    
prefer  to be together  
(either inside object  

or background) 



From entropy 
to color consistency 

||ln||||ln|| SSSS

volume  
balancing 

color consistency 

S 

Si = S i

|S| |Si| 

   i   i  

segmentation  S 
with better 

color consistency 

pixels in each color bin  i    
prefer  to be together  
(either inside object  

or background) 
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From entropy 
to color consistency 

||ln||||ln|| SSSS

volume  
balancing 

color consistency 

S 

Si = S i

|S| |Si| 

   i   i  

convex function of 
cardinality  |S| 

(non-submodular) 

pixels in each color bin  i    
prefer  to be together  
(either inside object  

or background) 

S 
concave function of 

cardinality  |Si| 
(submodular) 

Graph-cut constructions 
for similar cardinality terms 
(for  superpixel consistency) 

[Kohli et al. IJCV’09]  
  

In many applications, this term  
can be either dropped or replaced 

with simple unary ballooning 
[Tang et al. ICCV 2013] 
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|Si| 

From entropy 
to color consistency 

||ln||||ln|| SSSS

volume  
balancing 

color consistency 

(also, simpler construction) 

connect pixels in each color bin 
to corresponding auxiliary nodes 
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qppq ssw

boundary 
smoothness 

|S| |Si| 

   i   i  

In many applications, this term  
can be either dropped or replaced 

with simple unary ballooning 
[Tang et al. ICCV 2013] 

convex function of 
cardinality  |S| 

(non-submodular) 

L1 color separation 
works better in practice 
[Tang et al. ICCV 2013] 
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smoothness + color consistency 

 One Cut  
     [Tang, et al., ICCV’13] 

connect pixels in each color bin 
to corresponding auxiliary nodes 

Grabcut is  
sensitive to bin size 

guaranteed global minimum 

b
o

x 
se

gm
en

ta
ti

o
n

 

linear  
ballooning 

inside the box 



smoothness + color consistency 

 One Cut  
     [Tang, et al., ICCV’13] 
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ballooning from  
hard constraints 

linear 
ballooning from 

saliency measure  

connect pixels in each color bin 
to corresponding auxiliary nodes 

guaranteed global minimum linear  
ballooning 

inside the box 
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photo-consistency +  
smoothness + color consistency 

 Color consistency can be integrated into  

   binary stereo  

connect pixels in each color bin 
to corresponding auxiliary nodes 

+ color consistency 

photo-consistency+smoothness 



Approximating:  
 
- Convex cardinality potentials 
- Distribution consistency  
- Other high-order region terms 
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General Trust Region Approach 
(overview) 

Trust 
region 

(S)(S)E(S) BH

(S)(S)(S)E BU0

~

1st-order approximation for H(S) 

0S

d
submodular 

(easy) 
hard 
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• Constrained optimization 

     minimize  

 

 

• Unconstrained Lagrangian Formulation 

    minimize 

 

 

 

 

d||SS||s.t.

B(S)(S)U(S)E

0

0

~

can be approximated with unary terms 
[Boykov,Kolmogorov,Cremers,Delong, ECCV’06]  

45 

General Trust Region Approach 
(overview) 



Approximating  L2  distance 
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unary potentials [Boykov et al. ECCV 2006] 
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Trust Region  
Approximation 

|S| 

 

][)Pr(
Npq

qppq

p

Sp ssw|Iln
p

submodular terms 

appearance log-likelihoods boundary length 

non-submodular term 

volume constraint 

Linear approx. 
at S0 

S0 

S0 
submodular 
approx. 

trust  
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Volume Constraint  
for Vertebrae segmentation 

Log-Lik. + length 

48 



Back to entropy-based segmentation 

Interactive 
segmentation 

with box 

volume  
balancing 

color consistency 

][
Npq

qppq ssw

boundary smoothness 

|S| |Si| 

   i   i  

+ + 

submodular terms non-submodular term 

global minimum 

Approximations 
(local minima near the box) 



Trust Region  
Approximation 

Surprisingly, TR outperforms QPBO, DD, TRWS, BP, etc.  

on many high-order [CVPR’13] and/or  

non-submodular problems [arXiv13] 



Curvature 



Pair-wise smoothness: limitations 

52 

• discrete metrication errors 
 

4-neighborhood 

- continuous convex formulations  

8-neighborhood 

- resolved by higher connectivity 



Pair-wise smoothness: limitations 

53 

• boundary over-smoothing     (a.k.a. shrinking bias) 

 



Pair-wise smoothness: limitations 

54 

- curvature  

- needs higher-order smoothness 

• boundary over-smoothing     (a.k.a. shrinking bias) 

multi-view reconstruction  

[Vogiatzis et al. 2005] 



Higher-order smoothness & curvature 
for discrete regularization 

• Geman and Geman 1983           (line process, simulated annealing) 
 

• Second-order stereo and surface reconstruction 
– Li & Zuker 2010                          (loopy belief propagation) 
– Woodford et al. 2009                (fusion of proposals, QPBO) 
– Olsson et al. 2012-13                (fusion of planes, nearly submodular) 

 

• Curvature in segmentation:  
– Schoenemann et al. 2009       (complex, LP relaxation, many extra variables)  
– Strandmark & Kahl 2011         (complex, LP relaxation,…) 
– El-Zehiry & Grady 2010           (grid, 3-clique, only 90 degree accurate, QPBO) 
– Shekhovtsov et al.  2012         (grid patches, approximately learned, QPBO) 
– Olsson et al. 2013          (grid patches, integral geometry, partial enumeration) 
– Nieuwenhuis et al 2014?      (grid, 3-cliques, integral geometry, trust region) 

this talk 
good approximation of curvature, better and faster optimization  practical ! 



the rest of the talk: 

• Absolute curvature regularization on a grid 
[Olsson, Ulen, Boykov, Kolmogorov  -  ICCV 2013] 

 

 

• Squared curvature regularization on a grid 
      [Nieuwenhuis, Toppe, Gorelick, Veksler, Boykov  -  arXiv 2013] 



Absolute Curvature 

ds
S

||

Motivating example: for any convex shape 2ds
S

||

  

• no shrinking bias 
• thin structures 



Absolute Curvature 

n

n

easy to estimate 
via approximating 

polygons  

ds
S

||

polygons also work for p 
[Bruckstein et al. 2001] 



curvature on a cell complex 
(standard geometry)  

/2 /4 

/4 

/2 

• Schoenemann et al. 2009  
• Strandmark & Kahl 2011 

4- or 3-cliques on a cell complex 

 solved via LP relaxations 



curvature on a cell complex 
(standard geometry)  

/2 /4 

/4 

/2 

 

 

 

cell-patch cliques on a complex 

• Olsson et al., ICCV 2013 

 
partial enumeration + TRWS 

zero gap 

reduction to pair-wise   
Constrain Satisfaction Problem 

- new graph: patches are nodes 
- curvature is a unary potential 

- patches overlap, need consistency  

- tighter LP relaxation 
P4 P5 P6 

P1 P2 P3 
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curvature on a cell complex 
(standard geometry)  

0 0 0 
0 0 0 0 0 0 0 0 

/2 /4 
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2A+B= /2 A+F+G+H = /4 

D+E+F = /2 

A+C= /4 

/4 /2 /2 /2 /4 

curvature on a pixel grid 
(integral geometry)  

representative cell-patches representative pixel-patches 



2x2 patches 3x3 patches 5x5 patches 

zero gap 

integral approach to 
absolute curvature 

on a grid 



integral approach to 
absolute curvature 

on a grid 

2x2 patches 3x3 patches 5x5 patches 

zero gap 



Squared Curvature with 3-cliques 

ds
S

2



S 

S 
3-cliques 

 
 
 
 

with configurations 
(0,1,0) and (1,0,1) 

p 
p+  

p-  

general intuition example 

Nieuwenhuis et al.,   arXiv 2013 

more responses where curvature is higher 
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Thus, appropriately weighted 3-cliques estimate squared curvature integral 
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Experimental 
evaluation 



Experimental 
evaluation 
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Model is OK on given segments. 
But, how do we optimize non-submodular 

3-cliques (010) and (101)? 

1. Standard trick: convert to non-submodular  
    pair-wise binary optimization 

2. Our observation: QPBO does not work  
    (unless non-submodular regularization is very weak) 

Fast Trust Region [CVPR13, arXiv] 
 

  uses local submodular approximations 



Segmentation 
Examples 

length-based regularization 



elastica  [Heber,Ranftl,Pock, 2012] 

Segmentation 
Examples 



90-degree curvature  [El-Zehiry&Grady, 2010] 

Segmentation 
Examples 



our squared curvature 

7x7 neighborhood Segmentation 
Examples 



our squared curvature (stronger) 

7x7 neighborhood Segmentation 
Examples 



our squared curvature (stronger) 

2x2 neighborhood Segmentation 
Examples 



Binary inpainting 
length squared curvature  



Conclusions 
• Optimization of Entropy is a useful information- 

theoretic interpretation of color model estimation 

• L1 color separation is an easy-to-optimize objective 
useful in its own right [ICCV 2013] 

• Global optimization matters:   one cut [ICCV13] 

• Trust region, auxiliary cuts, partial enumeration 

     General approximation techniques 

   - for high-order energies [CVPR13] 

                       - for non-submodular energies [arXiv’13] 

     outperforming state-of-the-art combinatorial optimization methods 


