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Higher-order Segmentation Functionals:
Entropy, Color Consistency, Curvature, etc.

Yuri Boykov jointly with

. Nieuwenhuis



Different surface representations
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this talk

combinatorial

optimization

s, €{0,1}

graph labeling
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Image segmentation
Basics

E(S) =¥, 8) sB(S)

s, €{0,1}

) Pr(l, | fg)
P Pr(l, | bg)

v
—



Linear (modular) appearance of region §

R(S) = (f,S) = ) f, s,

Examples of potential functions f
* Log-likelihoods  f =—Mmer(l)
o _ _ PN Y
Chan-Vese f,=(1,-c¢)

* Ballooning fp =-1



Basic boundary regularization for §

B(S)= Y w -[s, #5,]

pqu Sp {0,1}

pair-wise discontinuities



Basic boundary regularization for §

B(S)= Y w -[s, #5,]

pqu Sp {0,1}

second-order terms

\

[s,—S,] = s,-(1-5,) + (1-5,)5,

guadratic



Basic boundary regularization for §

B(S)= > w-[s, #5,]

ogeN s, €{0,1}
second-order terms
Examples of discontinuity penalties w
* Boundary length Wyq = 1
* Image-weighted Wy, = exp (I )= |q)2

boundary length



Basic boundary regularization for §

B(S)= > w-[s, #5,]

pgeN

s, €{0,1}

second-order terms

e corresponds to boundary length | 0S|
— grids [B&K, 2003], via integral geometry
— complexes [Sullivan 1994]

* submodular second-order energy

— can be minimized exactly via graph cuts
[Greig et al./91, Sullivan’94, Boykov-Jolly’01]




Submodular set functions

any (binary) segmentation energy E(S)
is a set function E: 2 — R

(A0




Submodular set functions

Set function E: 2% — R is submodular if for any STcQ

E(SOT)+E(SUT)<E(S)+E(T)

GO

Significance: any submodular set function can be
globally optimized in polynomial time O( ‘ O ‘9)
[Grotschel et al.1981,88, Schrijver 2000]



Submodular set functions

an alternative equivalent definition providing intuitive interpretation: “diminishing returns”

Set function E:2” — Rissubmodularifforany S cTcO

E(T w{v})—E(T)<E(SuU{v}) - E(S)

Q
.V YW e

S'UT S'AT S’
Easily follows from the previous definition: E(I U{V}) +E(S) <E(SU{v}) +E(T)

Significance: any submodular set function can be
globally optimized in polynomial time O( ‘ O ‘9)
[Grotschel et al.1981,88, Schrijver 2000]



Graph cuts for minimization of
submodular set functions

Assume set Q and 2nd-order (quadratic) function

E(S) — Z qu(sp) q Sp,Sq E{O,l}

(Pg)eN Indicator variables

Function E(S) is submodularifforany (p,d) € N

E.(00)+E, (11) <E, (1,0)+E,(0,)

Significance: submodular 2"9%-order boolean (set) function
can be globally optimized in polynomial time by graph cuts

[Hammer 1968, Pickard&Ratliff 1973] O(|N|-|Q[*)
[Boros&Hammer 2000, Kolmogorov&Zabih2003]



Global Optimization

Combinatorial Continuous
optimization optimization

submodularity & convexity




Graph cuts for minimization of
posterior energy (MRF)

Assume Gibbs distribution over binary random variables S €{0,1}

Pr(s,,....s,) oc exp(-E(S)) for S={pl|s,=1}

Theorem [Boykov, Delong, Kolmogorov, Veksler in unpublished book 20147]

All random variables Sp are positively correlated iff set function E(S) is submodular

That is, submodularity implies MRF with “smoothness” prior



Basic segmentation energy

» foes) + > w[s)#s,]
P

pPgeN

segment region/appearance boundary smoothness



Higher-order binary segmentation

segment region/appearance boundary smoothness
Appearance Entropy (N-th order) Curvature (3-rd order)
Color consistency (N-th order) Convexity (3-rd order)

Cardinality potentials  (N-th order)

Distribution consistency (N-th order)

Connectivity (N-th order)
Shape priors (N-th order)



Overview of this talk

high-order functionals optimization

block-coordinate descent

From likelihoods to entropy ,
[Zhu&Yuille 96, GrabCut 04]

From entropy to color consistency global minimum
[our work: One Cut 2014]

Convex cardinality potentials

submodular approximations

Distribution con5|stency [our work: Trust Region 13, Auxiliary Cuts 13]

From length to curvature

other extensions [arXiv13]



Given likelihood models

unary (linear) term pair-wise (quadratic) term
E(S16,,6,) = Z mPr(1,16,) + > W,-[s, #s,] 5,0}
pgeN
assuming known guaranteed globally optimal S

e parametric models — e.g. Gaussian or GMM
* non-parametric models - histograms

image segmentation, graph cut
[Boykov&Jolly, ICCV2001]




Beyond fixed likelihood models

mixed optimization term  pair-wise (quadratic) term

E(S,0,,6,) = Z —Pr(1,16,) + D W[5, #5,] 5,0}
pgeN
extra variables NP hard mixed optimization!
* parametric models — e.g. Gaussian or GMM [Vesente et al., ICCV’'09]

* non-parametric models - histograms

Models 6, , 6,
are iteratively
re-estimated

(from initial box)

iterative image segmentation, Grabcut
(block coordinate descent S <> 0,,0,)

[Rother, et al. SIGGRAPH’2004]



Block-coordinate descent for E(s,9,,0,)

* Minimize over segmentation S for fixed 6, , 6,

E(S,056,) = D —mPr(l,]05) + > wy-[s,#s,]
p

pgeN

optimal S is computed using graph cuts, as in [BJ 2001] @

* Minimize over @,, 6, for fixed labeling S

E($,0,,0,) = > —mPr(1,]6,) + > —mPr(1]6,) + > w-[s, #5]

p:s,=0 p:sy=1 pgeN

00 = p 91 = p
distribution of intensities in distribution of intensities in
current bkg. segment§S ={p:S,=0} current obj. segment S={p:S,=1}



Iterative learning of color models
(binary case S, €{0,1})

* GrabCut: iterated graph cuts [Rrotheretal., SIGGRAPH 04]

E(S,80,6,) = D> —mPr(l,]6s) + > w,-[s, #s,]
p

pgeN

start from models 6, , 6, iterate graph cuts and model re-estimation
inside and outside some given box until convergence to a local minimum

solution is sensitive to initial box



Iterative learning of color models
(binary case s, €{0,1})

T\ &%

E=1.410x10° E=1.39x10° E=2.41x10° E=2.37x10°

BCD minimization of E(S,0,,0,) converges to a local minimum

(interactivity a la “snakes”)




Iterative learning of color models
(could be used for more than 2 labels s, €{0,1,2,...})

e Unsupervised segmentation [zhu&vuille, 1996]

using level sets + merging heuristic

E(S,00,01,0,.) = > —mPr(1,[6s) + > w,-[s,#s] + |labels

p pQeN

iterate segmentation
and model re-estimation
until convergence

models compete, stable result if sufficiently many

initialize models 6,, 6, , 6, , ...
from many randomly sampled boxes



Iterative learning of color models
(could be used for more than 2 labels s, €{0,1,2,...})

* Unsupervised segmentation [pelong et al., 2012]

using a-expansion (graph-cuts)

E(S,00,01,0,.) = > —mPr(1,[6s) + > w,-[s,#s] + |labels

p pQeN

iterate segmentation
and model re-estimation
until convergence

models compete, stable result if sufficiently many

initialize models 6,, 6, , 6, , ...
from many randomly sampled boxes



Iterative learning of other models
(could be used for more than 2 labels s, €{0,1,2,...})

* Geometric multi-model fitting [isack et al., 2012]

using a-expansion (graph-cuts)

E(S,0,6,,0,.) = > Hp.esp_ o
p

+ Y w[s,#s,]  + |labels|
pgeN

initialize plane models 6,, 6, , 6, , ...
from many randomly sampled SIFT matches
in 2 images of the same scene and model re-estimation

until convergence
models compete, stable result if sufficiently many

iterate segmentation



Iterative learning of other models
(could be used for more than 2 labels s, €{0,1,2,...})

* Geometric multi-model fitting [isack et al., 2012]

using a-expansion (graph-cuts)

E(S,65,6,,0,..) = Z H p-esp -p’
p

+ Y w,[s,#s,] + |labels|
pgeN

VIDEO =

initialize Fundamental matrices 6,, 6, , 6, , ... 5
from many randomly sampled SIFT matches iterate segmentatioh
in 2 consecutive frames in video and model re-estimation

until convergence
models compete, stable result if sufficiently many




From color model estimation
to entropy and color consistency

global optimization in One Cut

[Tang et al. ICCV 2013]



Interpretation of log-likelihoods:
entropy of segment intensities

S, ={peS|l, =i}

pixels of colori in S

p_s — | Si |
i
| S | distribution of intensities

probability of observed at S
intensity 1 in S

p°=/pS,ps,..pS )"

—Z[n@r(lp |9) where 9 {p;, Py,

pES given distribution
-7 of intensities

_Z|Si|°[npi <

-S| > po-lnp

H(S| )
cross entropy
of distribution p> w.r.t. 6

[



Interpretation of log-likelihoods:
entropy of segment intensities

joint estimation of S and color models [Rother et al., SIGGRAPH’04, ICCV’09]

E(S,0,,0,) = D, —InPr(1,16) + > ~InPr(l |6) + > w,,[s, #s,]

p:S,=0 p:S,=1 pgeN
IS |- H(S16,) IS|- H(S]|6,)
min
60 ,91 cross-entropy entropy
Note: H(P|Q)>H(P) for any two distributions (equality when Q=P)
M .rir:r::?és ]icn S .ﬁl:ﬁf.yef ]icn S
E(S) = |S]|- H(S) + IS|- H(S) + > w[s, #5,]

pgeN

minimization of segments entropy [Tang et al, ICCV 2013]



Interpretation of log-likelihoods:
entropy of segment intensities

mixed optimization [Rother et al., SIGGRAPH’04, ICCV’09]
E(S,8,,0,) = > —InPr(I,[6,) + > —InPr(l,[6) + > w,,-[s, #5,]
p:S,=0 p:S,=1 pgeN
IS |- H(S16,) IS|- H(S]|6,)
min
60 ,91 cross-entropy entropy
Note: H(P|Q)>H(P) for any two distributions (equality when Q=P)

A 4 entropy of _ entropy of
intensities in S intensitiesin S

E(S) = |S]|- H(S) + IS|- H(S) + > w[s, #5,]

binary optimization [Tang et al, ICCV 2013]



Interpretation of log-likelihoods:
entropy of segment intensities

E(S,0,,0,) = D, —InPr(1,16) + > ~InPr(l |6) + > w,,[s, #s,]

p:S,=0 p:S,=1 pgeN
S| H(S6,) S|- H(S|0,)

min

60 ,91 cross-entropy entropy

Note: H(P|Q)>H(P) for any two distributions (equality when Q=P)
M .rir:r::%s ]icn S .r?tztr:;fé: ]icn S
E(S) = ||S]|- H(S) + IS|- H(S) | + > w[s, #5,]
pgeN

common energy for categorical clustering, e.g. [Li et al. ICML 04]



Minimizing entropy of segments intensities
(intuitive motivation)

E(S)= |[S|-H(S) + |S|-H(S) +prq[sp¢sq]

pgeN

break image into two coherent segments
with low entropy of intensities

high entropy segmentation low entropy segmentation

unsupervised image segmentation (like in Chan-Vese)



Minimizing entropy of segments intensities
(intuitive motivation)

E(S)= |[S|-H(S) + |S|-H(S) +prq[sp;tsq]

pgeN

break image into two coherent segments
with low entropy of intensities

. o
\ :
l LS ”
,’.
BERR &
N\ I el

more general than Chan-Vese (colors can vary within each segment)




From entropy
to color consistency

all pixels 2 =02

Minimization of entropy encourages
pixels €2 of the same color bin i
to be segmented together

(proof: see next page)



From entropy
to color consistency

ES) =| IS|-H(S) +|S|-H(S) | + prq[sp;tsq]

pgeN

~IS1-2,p’ Inp7 ~ [S]-3pf Inpf

=2 IS It = SIS Iy

|n|s‘|— SIS -S| +In|S|— SIS |- s, |

N N

S, =512

S

SIn[S[+]S]In[s| = > (IS I-In]S;|+]S;|-In|S;]

A volume color consistency

balancing

-
-
-
g
’

> |S| :
0 £2/2 12 0 22 |4

________
~~o
~

)

pixels in each color bin i

prefer to be together
(either inside object
or background)



SIS [+[S]-In|S| = 2 (IS I-In[S;[+]S; |-In]S; )

From entropy

to color consistency

A vdume
balancing
5 15|
0 |[£2/2 €2

S, =512

segmentation S

with better
color consistency

S

pixels in each color bin i
________________ prefer to be together
.~ (either inside object
S| or background)

0 Q22 |9

1

color consistency




From entropy
to color consistency

In many applications, this term
can be either dropped or replaced
with simple unary ballooning
[Tang et al. ICCV 2013]

convex function of
cardinality |S|

Graph-cut constructions
for similar cardinality terms
(for superpixel consistency)

[Kohli et al. JCV’09]

concave function of
cardinality |S;|
(submodular)

S, =512

S

)

Sl-n|s|— > (IS [-n|S;[+]S;]-In|S;]

color consistency

________
~~o
~

-7
-
-
2
’

0 Q22 |9

1

pixels in each color bin i

prefer to be together
(either inside object
or background)



From entropy
to color consistency

L, color separation
works better in practice
[Tang et al. ICCV 2013]

(also, simpler construction)

In many applications, this term
can be either dropped or replaced
with simple unary ballooning
[Tang et al. ICCV 2013]

connect pixels in each color bin
to corresponding auxiliary nodes

convex function of
cardinality |S]

5]

S|-In|S| = D (IS I-In]S; [+[S; I-In[S; 1) + D wy[s, #s,]
i pgeN

color consistency boundary
! smoothness




smoothness + color consistency

(-
o
® One Cut 3
C
) Q
[Tang, et al., ICCV’'13] e
0Q .
guaranteed global minimum 3 - Imgar
) ” ballooning
< inside the box
14
13}
12t
= 11} == GrabCut
% =@= One-Cut
o 10 =o=DD
S
o 9
e ) 8+
connect pixels in each color bin
to corresponding auxiliary nodes 7L —
. 7 e
Grabcut is /6 o | |
sensitive to bin size 16 64 128 256

Num Bins per channel



smoothness + color consistency

C
i)
® One Cut 5
C
[Tang, et al., ICCV’'13] %;
guaranteed global minimum 3 . linear
S f#§ Dballooning
< inside the box
S
()
3
= .
o ballooning from

hard constraints

connect pixels in each color bin
to corresponding auxiliary nodes

linear
ballooning from
saliency measure

saliency-based
segmentation




photo-consistency +
smoothness + color consistency

m Color consistency can be integrated into
binary stereo

\W7/ 7/

\ A apva'lh
@'
o aveyr

ch color bin
"

lorb
iary nodes

photo-consistency+smoothness

+ color consistency

connect

pix
to corresp

I
onding auxi




Approximating:

- Convex cardinality potentials



General Trust Region Approach
(overview)

E(S) = H(S) + B(S)

submodular
d (easy)
| in E(S)=U (S)+B(S)

\\‘-"" |5=S,ll<d
1St order approximation for H(S)




General Trust Region Approach

(overview)
* Constrained optimization

minimize E(S) = U,(S) +B(S) g(
s.t.]| S-S, ||<d

* Unconstrained Lagrangian Formulation

minimize L. (S)=U,(S)+B(S)+A||S-S, ||

can be approximated with unary terms
[Boykov,Kolmogorov,Cremers,Delong, ECCV’06]




Approximating L, distance [|S-S; |

dp - signed distance map from C,

<dc,dc>=cjdc§.ds mzidp-dp ~2Y"d, (s, -52)
0 p

unary potentials [Boykov et al. ECCV 2006]



Trust Region
Approximation

Linear approx.

non-submodular term at's,
A submodular terms
+ Z—InPr(I 16, ) + > W, o[S, #S,]
L >|5| pgeN
0 / So appearance log-likelihoods boundary length
volume constraint
trust
region

submodular
approx.

L, distance to S,

+ /”L-Z d. (s, —s)
P




Volume Constraint
for Vertebrae segmentation

Log-Lik: + length




Error Rate(%)

Back to entropy-based segmentation

14r
== GrabCut
13+ == One-Cut
== DD
12 | =e=FTR
11l FTR2 pproximations
(local minima near thegdox)
10t
9_
8_ L] L]
global minimum
7L ==
+
6 1632 64 128 256

Num Bins per channel

non-submodular term
A volume
balancing

. Interactive
t segmentation
with box

submodular terms

color consistency

L Is]
of jan 19 0

2

1

5]

boundary smoothness

+ ZWPQ[SP ?qu]

pgeN



Trust Region
Approximation

Surprisingly, TR outperforms QPBO, DD, TRWS, BP, etc.
on many high-order [CVPR’13] and/or
non-submodular problems [arXiv13]




Curvature



Pair-wise smoothness: limitations

e discrete metrication errors

- resolved by higher connectivity

- continuous convex formulations

ﬁeiﬁwborhood ﬁei&hborhood

52



Pair-wise smoothness: limitations

* boundary over-smoothing (a.k.a. shrinking bias)

53



Pair-wise smoothness: limitations

* boundary over-smoothing (a.k.a. shrinking bias)

- needs higher-order smoothness

- curvature

% el B0
multi-view reconstruction
[Vogiatzis et al. 2005]




Higher-order smoothness & curvature
for discrete regularization

* Geman and Geman 1983 (line process, simulated annealing)

e Second-order stereo and surface reconstruction

— Li & Zuker 2010 (loopy belief propagation)
— Woodford et al. 2009 (fusion of proposals, QPBO)
— Olsson et al. 2012-13 (fusion of planes, nearly submodular)

* Curvature in segmentation:
— Schoenemann et al. 2009  (complex, LP relaxation, many extra variables)
— Strandmark & Kahl 2011 (complex, LP relaxation,...)
— El-Zehiry & Grady 2010 (grid, 3-clique, only 90 degree accurate, QPBO)
— Shekhovtsov et al. 2012 (grid patches, approximately learned, QPBO)
— Olsson et al. 2013 (grid patches, integral geometry, partial enumeration)
— Nieuwenhuis et al 2014?  (grid, 3-cliques, integral geometry, trust region)

this talk
good approximation of curvature, better and faster optimization pra ctical !



the rest of the talk:

* Absolute curvature regularization on a grid
[Olsson, Ulen, Boykov, Kolmogorov - ICCV 2013]

e Squared curvature regularization on a grid
[Nieuwenhuis, Toppe, Gorelick, Veksler, Boykov - arXiv 2013]



Absolute Curvature

qJx]-ds
0S

Motivating example: for any convex shape Cj“ K |- ds =27
O0S

| N

* no shrinking bias
* thin structures




Absolute Curvature

dix]-ds ~ 3 e,
0S n

easy to estimate
via approximating
polygons

polygons also work for [i|P
[Bruckstein et al. 2001]




curvature on a cell complex
(standard geometry)

7'[;/2 37'5/4

/4 o

nf2

4- or 3-cliques on a cell complex

* Schoenemann et al. 2009
e Strandmark & Kahl 2011

solved via LP relaxations




curvature on a cell complex
(standard geometry)
3n/4

/2 0
/4
/3‘7% .

o

zero gap

cell-patch cliques on a complex

* Olsson et al., ICCV 2013

partial enumeration + TRWS

S "
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. “‘. E 2000
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1500
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TRW-5 anargy

TRWS-5 lowear bound
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TRW-5 (g) lowar bound
s | AP a1 630 3y

= == GTRW-5 lowar bound
= mmw MPLP lowar bound
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curvature on a cell complex
(standard geometry)

g Sl

3n/4

o

/2

representative cell-patches

OO OO

3n/4

/2 /2 /4

Y%

0

/2

curvature on a pixel grid
(integral geometry)

2A+B=1/2 A+F+G+H = 37t/4
A 0 A
A H | | F
5 Ll
0 G
A C 0
D 0

A+C=1/4 h:"’E

F

D+E+F =1/2

representative pixel-patches




integral approach to
absolute curvature

on a grid

| 2>|(2 platc‘hes‘

3x3 patches

| 5>|<5 platc‘hes‘

zero gap




integral approach to
absolute curvature
on a grid

2x2 patches 3x3 patches

zero gap



Squared Curvature with 3-cliques

41(2-(18
OS



Nieuwenhuis et al., arXiv 2013

general intuition example

3-cliques

P
\\B"‘A

with configurations
(0,1,0) and (1,0,1)

more responses where curvature is higher






-
- =~

. ~
Zzoom-in \ -

-

Thus, appropriately weighted 3-cliques estimate squared curvature integral



Experimental
evaluation

<j‘K2-dS _ 1

Circle(r)

I




d=2

Experimental . —

true squared

[

curvature

evaluation ;| |
<j1<2 ds = 1 _

Circle(r)

estimated squared curvature




Model is OK on given segments.

But, how do we optimize non-submodular
3-cligues (010) and (101)?

1. Standard trick: convert to non-submodular
pair-wise binary optimization

2. Our observation: QPBQ_does not work

(unless non-submodular regularization is very weak)

Fast Trust Region [CVPR13, arXiv]

uses local submodular approximations



Segmentation
Examples

length-based regularization



Segmentation
Examples

elastica [Heber,Ranftl,Pock, 2012]



Segmentation
Examples

90-degree curvature [El-Zehiry&Grady, 2010]



7x7 neighborhood

Segmentation
Examples

» y)

our squared curvature




7x7 neighborhood

g

Segmentation
Examples

our squared curvature (stronger)



2x2 neighborhood

£

Segmentation
Examples

our squared curvature (stronger)



Binary inpainting

length squared curvature




Conclusions
Optimization of Entropy is a useful information-
theoretic interpretation of color model estimation

L, color separation is an easy-to-optimize objective
useful in its own right [iccv 2013]

Global optimization matters: one cut [iccvi3]
Trust region, auxiliary cuts, partial enumeration
General approximation techniques

- for high-order energies [CVPR13]

- for non-submodular energies [arXiv’'13]

outperforming state-of-the-art combinatorial optimization methods



