

Total generalized variation: From regularization theory to applications in imaging

Kristian Bredies

Institute for Mathematics and Scientific Computing University of Graz

First French-German Mathematical Image Analysis Conference January 13, 2014

Outline

1 Introduction

- 2 Total Generalized Variation
 - Existence and stability for second order
 - Regularization theory for general orders
 - Optimization algorithms
- 3 Applications
 - Compressive imaging
 - JPEG(2000) decompression and zooming
 - Quantitative susceptibility mapping
 - Dual energy CT denoising

4 Summary

1 Introduction

- 2 Total Generalized Variation
 - Existence and stability for second order
 - Regularization theory for general orders
 - Optimization algorithms
- 3 Applications
 - Compressive imaging
 - JPEG(2000) decompression and zooming
 - Quantitative susceptibility mapping
 - Dual energy CT denoising

4 Summary

Problem:

11

Reconstruct image u from

(blurred) noisy data

noisy indirect measurements, etc.

Widely used approach:

$$\min_{\in \mathsf{BV}(\Omega)} \frac{\|Ku - f\|_2^2}{2} + \alpha \operatorname{TV}(u)$$

Total variation $\top V$:

- Convex energy
- Allows for discontinuities
- Enforces "sparse" gradient

и

Problem:

Reconstruct image u from

- (blurred) noisy data
- noisy indirect measurements, etc.

Widely used approach:

$$\min_{u\in\mathsf{BV}(\Omega)} \frac{\|Ku-f\|_2^2}{2} + \alpha \operatorname{TV}(u)$$

Total variation $\top V$:

- Convex energy
- Allows for discontinuities
- Enforces "sparse" gradient

и

Problem:

Reconstruct image u from

- (blurred) noisy data
- noisy indirect measurements, etc.

Widely used approach:

$$\min_{u\in\mathsf{BV}(\Omega)} \frac{\|\mathcal{K}u-f\|_2^2}{2} + \alpha \,\mathsf{TV}(u)$$

Total variation $\top V$:

- Convex energy
- Allows for discontinuities
- Enforces "sparse" gradient

Drawbacks:

- Unaware of higher-order smoothness
- Texture is not captured

и

Problem:

Reconstruct image u from

- (blurred) noisy data
- noisy indirect measurements, etc.

Widely used approach:

$$\min_{u \in \mathsf{BV}(\Omega)} \ \frac{\|Ku - f\|_2^2}{2} + \alpha \operatorname{TV}(u)$$

Total variation TV:

- Convex energy
- Allows for discontinuities
- Enforces "sparse" gradient

Drawbacks:

- Unaware of higher-order smoothness
- Texture is not captured

Convex higher-order image models

Higher-order TV: $\Phi(u) = \int_{\Omega} d|\nabla^2 u|$ [Lysaker/Lundervold/Tai '03] [Hinterberger/Scherzer '04] ■ Favors smooth solutions ■ Edges are not preserved

Convex higher-order image models

Higher-order TV: $\Phi(u) = \int_{\Omega} d|\nabla^2 u|$ [Lysaker/Lundervold/Tai '03] [Hinterberger/Scherzer '04] Favors smooth solutions Edges are not preserved $TV-TV^2$ infimal convolution: $\Phi(u) = \min_{u=u_1+u_2} \int_{\Omega} d|\nabla u_1| + \beta \int_{\Omega} d|\nabla^2 u_2|$ [Chambolle/Lions '97] Models piecewise smooth images Staircase effect dominates solutions

Convex higher-order image models

Higher-order TV: $\Phi(u) = \int_{\Omega}^{u} d|\nabla^{2}u|$ [Lysaker/Lundervold/Tai '03] [Hinterberger/Scherzer '04] Favors smooth solutions Edges are not preserved $TV-TV^2$ infimal convolution: $\Phi(u) = \min_{u=u_1+u_2} \int_{\Omega} d|\nabla u_1| + \beta \int_{\Omega} d|\nabla^2 u_2|$ [Chambolle/Lions '97] Models piecewise smooth images Staircase effect dominates solutions → Different approach is needed

Outline

1 Introduction

- 2 Total Generalized Variation
 - Existence and stability for second order
 - Regularization theory for general orders
 - Optimization algorithms

3 Applications

- Compressive imaging
- JPEG(2000) decompression and zooming
- Quantitative susceptibility mapping
- Dual energy CT denoising

4 Summary

Joint work with Karl Kunisch and Thomas Pock

 $\begin{array}{ll} \textbf{Definition:} & \text{Total Generalized Variation} \\ \mathsf{TGV}_{\alpha}^{k}(u) = \sup \left\{ \int_{\Omega} u \operatorname{div}^{k} v \ \mathrm{d}x \ \Big| \ v \in \mathcal{C}_{\mathsf{c}}^{k}(\Omega, \operatorname{Sym}^{k}(\mathbb{R}^{d})), \\ \|\operatorname{div}^{l} v\|_{\infty} \leq \alpha_{l}, l = 0, \dots, k - 1 \right\} \\ \bullet \ \alpha = (\alpha_{0}, \dots, \alpha_{k-1}) > 0 \text{ weights} \end{array}$

Joint work with Karl Kunisch and Thomas Pock

Definition: Total Generalized Variation

$$TGV_{\alpha}^{k}(u) = \sup \left\{ \int_{\Omega} u \operatorname{div}^{k} v \, dx \mid v \in C_{c}^{k}(\Omega, \operatorname{Sym}^{k}(\mathbb{R}^{d})), \\ \|\operatorname{div}^{l} v\|_{\infty} \leq \alpha_{l}, l = 0, \dots, k - 1 \right\}$$

$$\alpha = (\alpha_{0}, \dots, \alpha_{k-1}) > 0 \text{ weights}$$

Idea:

- Incorporate information from $\nabla u, \ldots, \nabla^k u$
- Formal observation:

Joint work with Karl Kunisch and Thomas Pock

 $\begin{array}{ll} \textbf{Definition:} & \text{Total Generalized Variation} \\ \mathsf{TGV}_{\alpha}^{k}(u) = \sup \left\{ \int_{\Omega} u \operatorname{div}^{k} v \ \mathrm{d}x \ \Big| \ v \in \mathcal{C}_{\mathsf{c}}^{k}(\Omega, \operatorname{Sym}^{k}(\mathbb{R}^{d})), \\ \|\operatorname{div}^{l} v\|_{\infty} \leq \alpha_{l}, l = 0, \dots, k - 1 \right\} \\ \bullet \ \alpha = (\alpha_{0}, \dots, \alpha_{k-1}) > 0 \text{ weights} \end{array}$

Idea:

- Incorporate information from $\nabla u, \ldots, \nabla^k u$
- Formal observation:

$$\int_{\Omega} |\nabla^{k} u| \qquad \mathsf{d} x = \sup \left\{ \int_{\Omega} u \operatorname{div}^{k} v \, \mathsf{d} x \right. \\ \left| \begin{array}{l} v \in \mathcal{C}^{k}_{\mathsf{c}}(\Omega, \operatorname{Sym}^{k}(\mathbb{R}^{d})), \ \|v\|_{\infty} \leq 1 \end{array} \right.$$

Joint work with Karl Kunisch and Thomas Pock

 $\begin{array}{ll} \textbf{Definition:} & \text{Total Generalized Variation} \\ \mathsf{TGV}_{\alpha}^{k}(u) = \sup \left\{ \int_{\Omega} u \operatorname{div}^{k} v \ \mathrm{d}x \ \Big| \ v \in \mathcal{C}_{\mathsf{c}}^{k}(\Omega, \operatorname{Sym}^{k}(\mathbb{R}^{d})), \\ \|\operatorname{div}^{l} v\|_{\infty} \leq \alpha_{l}, l = 0, \dots, k - 1 \right\} \\ \bullet \ \alpha = (\alpha_{0}, \dots, \alpha_{k-1}) > 0 \text{ weights} \end{array}$

Idea:

- Incorporate information from $\nabla u, \ldots, \nabla^k u$
- Formal observation:

$$\inf_{\mathcal{E}^{k-l}(p_l)=0} \int_{\Omega} |\nabla^l u + p_l| \, \mathrm{d}x = \sup \left\{ \int_{\Omega} u \operatorname{div}^k v \, \mathrm{d}x \\ \middle| v \in \mathcal{C}^k_{\mathsf{c}}(\Omega, \operatorname{Sym}^k(\mathbb{R}^d)), \ \|\operatorname{div}^{k-l}v\|_{\infty} \le 1 \right\}$$

Definition:

$$\mathsf{TGV}_{\alpha}^{k}(u) = \sup \left\{ \int_{\Omega} u \operatorname{div}^{k} v \, \mathrm{d}x \mid v \in \mathcal{C}_{c}^{k}(\Omega, \operatorname{Sym}^{k}(\mathbb{R}^{d})), \\ \|\operatorname{div}^{l} v\|_{\infty} \leq \alpha_{l}, l = 0, \dots, k - 1 \right\}$$

$$\alpha = (\alpha_{0}, \dots, \alpha_{k-1}) > 0 \text{ weights}$$

- **T**GV^{*k*}_{α} is proper, convex, lower semi-continuous
- TGV^k_α is translation and rotation invariant
- $\mathsf{TGV}^k_{\alpha} + \| \cdot \|_1$ gives Banach space $\mathsf{BGV}^k_{\alpha}(\Omega)$
- ker(TGV^k_{α}) = $\mathcal{P}^{k-1}(\Omega)$ polynomials of degree less than k
- $\blacksquare \mathsf{TGV}^k_\alpha$ measures piecewise \mathcal{P}^{k-1} only at the interfaces

Definition:

$$\mathsf{TGV}_{\alpha}^{k}(u) = \sup \left\{ \int_{\Omega} u \operatorname{div}^{k} v \, \mathrm{d}x \mid v \in \mathcal{C}_{c}^{k}(\Omega, \operatorname{Sym}^{k}(\mathbb{R}^{d})), \\ \|\operatorname{div}^{l} v\|_{\infty} \leq \alpha_{l}, l = 0, \dots, k - 1 \right\}$$

$$\alpha = (\alpha_{0}, \dots, \alpha_{k-1}) > 0 \text{ weights}$$

- **T**GV^{*k*}_{α} is proper, convex, lower semi-continuous
- TGV_{α}^{k} is translation and rotation invariant
- $\mathsf{TGV}_{\alpha}^{k} + \| \cdot \|_{1}$ gives Banach space $\mathsf{BGV}_{\alpha}^{k}(\Omega)$
- ker(TGV^k_{α}) = $\mathcal{P}^{k-1}(\Omega)$ polynomials of degree less than k
- **T**GV $^k_{\alpha}$ measures piecewise \mathcal{P}^{k-1} only at the interfaces

Definition:

$$\mathsf{TGV}_{\alpha}^{k}(u) = \sup \left\{ \int_{\Omega} u \operatorname{div}^{k} v \, \mathrm{d}x \mid v \in \mathcal{C}_{c}^{k}(\Omega, \operatorname{Sym}^{k}(\mathbb{R}^{d})), \\ \|\operatorname{div}^{l} v\|_{\infty} \leq \alpha_{l}, l = 0, \dots, k - 1 \right\}$$

$$\alpha = (\alpha_{0}, \dots, \alpha_{k-1}) > 0 \text{ weights}$$

- **T**GV^{*k*}_{α} is proper, convex, lower semi-continuous
- TGV^k_α is translation and rotation invariant
- $\mathsf{TGV}_{\alpha}^{k} + \| \cdot \|_{1}$ gives Banach space $\mathsf{BGV}_{\alpha}^{k}(\Omega)$
- ker(TGV^k_{α}) = $\mathcal{P}^{k-1}(\Omega)$ polynomials of degree less than k
- $\blacksquare \mathsf{TGV}^k_\alpha$ measures piecewise \mathcal{P}^{k-1} only at the interfaces

Definition:

$$\mathsf{TGV}_{\alpha}^{k}(u) = \sup \left\{ \int_{\Omega} u \operatorname{div}^{k} v \, \mathrm{d}x \mid v \in \mathcal{C}_{c}^{k}(\Omega, \operatorname{Sym}^{k}(\mathbb{R}^{d})), \\ \|\operatorname{div}^{l} v\|_{\infty} \leq \alpha_{l}, l = 0, \dots, k - 1 \right\}$$

$$\alpha = (\alpha_{0}, \dots, \alpha_{k-1}) > 0 \text{ weights}$$

- **T**GV^{*k*}_{α} is proper, convex, lower semi-continuous
- TGV^k_α is translation and rotation invariant
- $\mathsf{TGV}_{\alpha}^{k} + \| \cdot \|_{1}$ gives Banach space $\mathsf{BGV}_{\alpha}^{k}(\Omega)$
- ker(TGV^k_{α}) = $\mathcal{P}^{k-1}(\Omega)$ polynomials of degree less than k
- $\blacksquare \mathsf{TGV}^k_\alpha$ measures piecewise \mathcal{P}^{k-1} only at the interfaces

Definition:

$$\mathsf{TGV}_{\alpha}^{k}(u) = \sup \left\{ \int_{\Omega} u \operatorname{div}^{k} v \, \mathrm{d}x \mid v \in \mathcal{C}_{\mathsf{c}}^{k}(\Omega, \mathsf{Sym}^{k}(\mathbb{R}^{d})), \\ \|\operatorname{div}^{l} v\|_{\infty} \leq \alpha_{l}, l = 0, \dots, k - 1 \right\}$$

$$\alpha = (\alpha_{0}, \dots, \alpha_{k-1}) > 0 \text{ weights}$$

- **T**GV^{*k*}_{α} is proper, convex, lower semi-continuous
- TGV^k_α is translation and rotation invariant
- $\mathsf{TGV}^k_{\alpha} + \| \cdot \|_1$ gives Banach space $\mathsf{BGV}^k_{\alpha}(\Omega)$
- ker(TGV^k_{α}) = $\mathcal{P}^{k-1}(\Omega)$ polynomials of degree less than k
- $\blacksquare \mathsf{TGV}^k_\alpha$ measures piecewise \mathcal{P}^{k-1} only at the interfaces

Noisy image

TV regularization

$\mathsf{TV}\text{-}\mathsf{TV}^2$ infimal-convolution regularization

231

200

210

230

Application: Denoising

TGV^2_{α} regularization

TGV^3_{α} regularization

230

Questions

How to interpret TGV?

How is higher-order information incorporated?

Questions

How to interpret TGV?

How is higher-order information incorporated?

Can TGV be used as regularization functional? ■ Goal: Solve, for a large class of K, min 1/2 ||Ku - f||² + TGV^k_α(u)

Questions

How to interpret TGV?

How is higher-order information incorporated?

Can TGV be used as regularization functional? ■ Goal: Solve, for a large class of K, min ¹/₂ ||Ku - f||²/₂ + TGV^k_α(u)

Are the theoretical results applicable in practice?

- Are there efficient minimization algorithms?
- Does the model lead to improvements in image reconstruction?

11/51

Interpretation: TGV of second order

Minimum characterization:

$$\mathsf{TGV}_{\alpha}^{2}(u) = \min_{w \in \mathsf{BD}(\Omega)} \alpha_{1} \int_{\Omega} |\nabla u - w| + \alpha_{0} \int_{\Omega} |\mathcal{E}(w)|$$

$$\mathsf{BD}(\Omega) = \{ w \in L^{1}(\Omega, \mathbb{R}^{d}) \mid \mathcal{E}(w) \in \mathcal{M}(\Omega, \mathsf{Sym}^{2}(\mathbb{R}^{d})) \}$$

Vector fields of *bounded deformation*

Intuitive interpretation:

Locally: ∇u smooth $\rightsquigarrow w = \nabla u \approx \text{optimal}$ $\rightsquigarrow \mathsf{TGV}_{\alpha}^2 \sim \alpha_0 \int_{\mathsf{loc}} |\nabla^2 u|$ Locally: u jumps $\rightsquigarrow w = 0 \approx \text{optimal}$ $\rightsquigarrow \text{TGV}_{\alpha}^2 \sim \alpha_1 \int_{\text{loc}} |\nabla u|$

Optimal balancing between ∇u and ∇²u
 → TGV²_α(pw. smooth) < TGV²_α(staircases) → preferred

■ Radon norm ~→ measure-based decomposition

Interpretation: TGV of second order

Minimum characterization:

$$\mathsf{TGV}_{\alpha}^{2}(u) = \min_{w \in \mathsf{BD}(\Omega)} \alpha_{1} \int_{\Omega} |\nabla u - w| + \alpha_{0} \int_{\Omega} |\mathcal{E}(w)|$$

$$\mathsf{BD}(\Omega) = \{ w \in L^{1}(\Omega, \mathbb{R}^{d}) \mid \mathcal{E}(w) \in \mathcal{M}(\Omega, \mathsf{Sym}^{2}(\mathbb{R}^{d})) \}$$

Vector fields of *bounded deformation*

Intuitive interpretation:

Locally: ∇u smooth $\rightsquigarrow w = \nabla u \approx \text{optimal}$ $\rightsquigarrow \text{TGV}_{\alpha}^2 \sim \alpha_0 \int_{\text{loc}} |\nabla^2 u|$ Locally: u jumps $\rightsquigarrow w = 0 \approx \text{optimal}$ $\rightsquigarrow \text{TGV}_{\alpha}^2 \sim \alpha_1 \int_{\text{loc}} |\nabla u|$

Optimal balancing between ∇u and ∇²u
 → TGV²_α(pw. smooth) < TGV²_α(staircases) → preferred

■ Radon norm ~→ measure-based decomposition

11/51

Interpretation: TGV of second order

Minimum characterization:

$$\mathsf{TGV}_{\alpha}^{2}(u) = \min_{w \in \mathsf{BD}(\Omega)} \alpha_{1} \int_{\Omega} |\nabla u - w| + \alpha_{0} \int_{\Omega} |\mathcal{E}(w)|$$

$$\mathsf{BD}(\Omega) = \{ w \in L^{1}(\Omega, \mathbb{R}^{d}) \mid \mathcal{E}(w) \in \mathcal{M}(\Omega, \mathsf{Sym}^{2}(\mathbb{R}^{d})) \}$$

Vector fields of *bounded deformation*

Intuitive interpretation:

Locally: ∇u smooth $\rightsquigarrow w = \nabla u \approx \text{optimal}$ $\rightsquigarrow \text{TGV}_{\alpha}^2 \sim \alpha_0 \int_{\text{loc}} |\nabla^2 u|$ Locally: u jumps $\rightsquigarrow w = 0 \approx \text{optimal}$ $\rightsquigarrow \text{TGV}_{\alpha}^2 \sim \alpha_1 \int_{\text{loc}} |\nabla u|$

• Optimal balancing between ∇u and $\nabla^2 u$ $\rightsquigarrow TGV^2_{\alpha}(pw. smooth) < TGV^2_{\alpha}(staircases) \rightsquigarrow preferred$

■ Radon norm ~→ measure-based decomposition

Interpretation: TGV of second order

Minimum characterization:

$$\mathsf{TGV}_{\alpha}^{2}(u) = \min_{w \in \mathsf{BD}(\Omega)} \alpha_{1} \int_{\Omega} |\nabla u - w| + \alpha_{0} \int_{\Omega} |\mathcal{E}(w)|$$

$$\mathsf{BD}(\Omega) = \{ w \in L^{1}(\Omega, \mathbb{R}^{d}) \mid \mathcal{E}(w) \in \mathcal{M}(\Omega, \mathsf{Sym}^{2}(\mathbb{R}^{d})) \}$$

Vector fields of *bounded deformation*

Intuitive interpretation:

Locally: ∇u smooth $\rightsquigarrow w = \nabla u \approx \text{optimal}$ $\rightsquigarrow \text{TGV}_{\alpha}^2 \sim \alpha_0 \int_{\text{loc}} |\nabla^2 u|$ Locally: u jumps $\rightsquigarrow w = 0 \approx \text{optimal}$ $\rightsquigarrow \text{TGV}_{\alpha}^2 \sim \alpha_1 \int_{\text{loc}} |\nabla u|$

Optimal balancing between ∇u and ∇²u → TGV²_α(pw. smooth) < TGV²_α(staircases) → preferred

 \blacksquare Radon norm \rightsquigarrow measure-based decomposition

TGV regularization

Joint work with Tuomo Valkonen

Exemplarily:

- Solution of linear ill-posed inverse problems
- Total Generalized Variation of second order

Inverse Problem:		
solve	Ku = f	
• $\Omega \subset \mathbb{R}^d$ bounded domain		
• $K: L^p(\Omega) \to H$		
linear and continuous		

Minimize: Tikhonov-functional $\min_{u \in L^{p}(\Omega)} \frac{\|Ku - f\|_{H}^{2}}{2} + TGV_{\alpha}^{2}(u)$

TGV regularization

Joint work with Tuomo Valkonen

Exemplarily:

- Solution of linear ill-posed inverse problems
- Total Generalized Variation of second order

Inverse Problem:	Minimize:
solve $Ku = f$	Tikhonov-functional
• $\Omega \subset \mathbb{R}^d$ bounded domain • $K : L^p(\Omega) \to H$	$\min_{u\in L^p(\Omega)} \frac{\ Ku-f\ _H^2}{2}$
linear and continuous	$+ \operatorname{TGV}^2_{lpha}(u)$

- \rightsquigarrow Nonsmooth optimization problem
- Which conditions ensure existence of solutions?
- Are the solutions stable with respect to f?

TGV regularization

Joint work with Tuomo Valkonen

Exemplarily:

- Solution of linear ill-posed inverse problems
- Total Generalized Variation of second order

Inverse Problem:	Minimize:
solve $Ku = f$	Tikhonov-functional
• $\Omega \subset \mathbb{R}^d$ bounded domain • $K : L^p(\Omega) \to H$	$\min_{u\in L^p(\Omega)} \frac{\ Ku-f\ _H^2}{2}$
linear and continuous	$+ \operatorname{TGV}^2_{\alpha}(u)$

- \rightsquigarrow Nonsmooth optimization problem
- Which conditions ensure existence of solutions?
- Are the solutions stable with respect to f?

 \rightsquigarrow Show topological equivalence with $\mathsf{BV}(\Omega)$

Vector fields of bounded deformation

 $\mathsf{BD}(\Omega) = \{ w \in L^1(\Omega, \mathbb{R}^d) \mid \mathcal{E}(w) \in \mathcal{M}(\Omega, \mathsf{Sym}^2(\mathbb{R}^d)) \}$ $\|w\|_{\mathsf{BD}} = \|w\|_1 + \|\mathcal{E}(w)\|_{\mathcal{M}}$

Well-known in the theory of mathematical plasticity

Some properties:

• $BD(\Omega)$ is a Banach space

• $\ker(\mathcal{E}) = \{w : \Omega \to \mathbb{R}^d \mid w(x) = Ax + b, A^T = -A\} \subset \mathsf{BD}(\Omega)$ Space of *infinitesimal rigid displacements*

Sobolev-Korn inequality:

$$\|w - Rw\|_1 \leq C \|\mathcal{E}(w)\|_{\mathcal{M}}$$

 $R:\mathsf{BD}(\Omega)\to \mathsf{ker}(\mathcal{E})$ linear projection

Vector fields of bounded deformation

 $\mathsf{BD}(\Omega) = \{ w \in L^1(\Omega, \mathbb{R}^d) \mid \mathcal{E}(w) \in \mathcal{M}(\Omega, \mathsf{Sym}^2(\mathbb{R}^d)) \}$ $\|w\|_{\mathsf{BD}} = \|w\|_1 + \|\mathcal{E}(w)\|_{\mathcal{M}}$

Well-known in the theory of mathematical plasticity

Some properties:

- BD(Ω) is a Banach space
- $\ker(\mathcal{E}) = \{w : \Omega \to \mathbb{R}^d \mid$

 $w(x) = Ax + b, A^{\mathsf{T}} = -A \} \subset \mathsf{BD}(\Omega)$

Space of infinitesimal rigid displacements

Sobolev-Korn inequality:

$$\|w - Rw\|_1 \leq C \|\mathcal{E}(w)\|_{\mathcal{M}}$$

 $R:\mathsf{BD}(\Omega) o \mathsf{ker}(\mathcal{E})$ linear projection

Vector fields of bounded deformation

 $\mathsf{BD}(\Omega) = \{ w \in L^1(\Omega, \mathbb{R}^d) \mid \mathcal{E}(w) \in \mathcal{M}(\Omega, \mathsf{Sym}^2(\mathbb{R}^d)) \}$ $\|w\|_{\mathsf{BD}} = \|w\|_1 + \|\mathcal{E}(w)\|_{\mathcal{M}}$

Well-known in the theory of mathematical plasticity

Some properties:

BD(Ω) is a Banach space

• ker $(\mathcal{E}) = \{ w : \Omega \to \mathbb{R}^d \mid w(x) = Ax + b, A^T = -A \} \subset BD(\Omega)$ Space of *infinitesimal rigid displacements*

Sobolev-Korn inequality:

 $\|w - Rw\|_1 \leq C \|\mathcal{E}(w)\|_{\mathcal{M}}$

 $R:\mathsf{BD}(\Omega) o \mathsf{ker}(\mathcal{E})$ linear projection

Topological equivalence

Theorem: $\Omega \subset \mathbb{R}^d$ sufficiently smooth \Rightarrow $c \|u\|_{\mathsf{BV}} \le \|u\|_1 + \mathsf{TGV}^2_\alpha(u) \le C \|u\|_{\mathsf{BV}} \quad \forall u \in \mathsf{BGV}^2_\alpha(\Omega)$

Topological equivalence

Theorem: $\Omega \subset \mathbb{R}^d$ sufficiently smooth \Rightarrow $c \|u\|_{\mathsf{BV}} \le \|u\|_1 + \mathsf{TGV}^2_\alpha(u) \le C \|u\|_{\mathsf{BV}} \quad \forall u \in \mathsf{BGV}^2_\alpha(\Omega)$

Proof:

1 We have $\|u\|_{\mathsf{BV}} \leq C_1 (\|\nabla u - Rw\|_{\mathcal{M}} + \|u\|_1) \ \forall w \in \mathsf{BD}(\Omega)$

2 Sobolev-Korn inequality + minimum characterization:

$$\begin{split} \|\nabla u - Rw\|_{\mathcal{M}} &\leq \|\nabla u - w\|_{\mathcal{M}} + \|w - Rw\|_{1} \\ &\leq C_{3}(\alpha_{1}\|\nabla u - w\|_{\mathcal{M}} + \alpha_{0}\|\mathcal{E}(w)\|_{\mathcal{M}}) \\ \Rightarrow \quad \inf_{w \in \mathsf{BD}(\Omega)} \|\nabla u - Rw\|_{\mathcal{M}} &\leq C_{3}\operatorname{TGV}_{\alpha}^{2}(u) \\ 3 \text{ With the help of } 1: \Rightarrow \|u\|_{\mathsf{BV}} \leq C_{4}(\|u\|_{1} + \operatorname{TGV}_{\alpha}^{2}(u)) \\ 4 \text{ Finally: } \operatorname{TGV}_{\alpha}^{2}(u) \leq \alpha_{1}\operatorname{TV}(u) \\ \Rightarrow \|u\|_{1} + \operatorname{TGV}_{\alpha}^{2}(u) \leq C_{5}\|u\|_{\mathsf{BV}} \quad \Box \end{split}$$

14/51

Topological equivalence

Theorem: $\Omega \subset \mathbb{R}^d$ sufficiently smooth \Rightarrow $c \|u\|_{\mathsf{BV}} \le \|u\|_1 + \mathsf{TGV}^2_\alpha(u) \le C \|u\|_{\mathsf{BV}} \quad \forall u \in \mathsf{BGV}^2_\alpha(\Omega)$

Proof:

1 We have $\|u\|_{\mathsf{BV}} \leq C_1 ig(\|
abla u - \mathsf{Rw}\|_{\mathcal{M}} + \|u\|_1ig) \ \forall w \in \mathsf{BD}(\Omega)$

2 Sobolev-Korn inequality + minimum characterization:

$$\begin{aligned} \|\nabla u - Rw\|_{\mathcal{M}} &\leq \|\nabla u - w\|_{\mathcal{M}} + \|w - Rw\|_{1} \\ &\leq C_{3}(\alpha_{1}\|\nabla u - w\|_{\mathcal{M}} + \alpha_{0}\|\mathcal{E}(w)\|_{\mathcal{M}}) \end{aligned}$$

 $\Rightarrow \quad \inf_{w \in \mathsf{BD}(\Omega)} \|\nabla u - Rw\|_{\mathcal{M}} \leq C_3 \operatorname{TGV}^2_{\alpha}(u)$

3 With the help of 1: $\Rightarrow \|u\|_{\mathsf{BV}} \leq C_4(\|u\|_1 + \mathsf{TGV}^2_\alpha(u))$

4 Finally: $\mathsf{TGV}^2_{\alpha}(u) \leq \alpha_1 \mathsf{TV}(u)$ $\Rightarrow \|u\|_1 + \mathsf{TGV}^2_{\alpha}(u) \leq C_5 \|u\|_{\mathsf{BV}}$

Topological equivalence

Theorem: $\Omega \subset \mathbb{R}^d$ sufficiently smooth \Rightarrow $c \|u\|_{\mathsf{BV}} \le \|u\|_1 + \mathsf{TGV}^2_\alpha(u) \le C \|u\|_{\mathsf{BV}} \quad \forall u \in \mathsf{BGV}^2_\alpha(\Omega)$

Proof:

1 We have
$$\|u\|_{\mathsf{BV}} \leq C_1 ig(\|
abla u - \mathsf{Rw}\|_{\mathcal{M}} + \|u\|_1ig) \ \forall w \in \mathsf{BD}(\Omega)$$

2 Sobolev-Korn inequality + minimum characterization:

 $\begin{aligned} \|\nabla u - Rw\|_{\mathcal{M}} &\leq \|\nabla u - w\|_{\mathcal{M}} + \|w - Rw\|_{1} \\ &\leq C_{3}(\alpha_{1}\|\nabla u - w\|_{\mathcal{M}} + \alpha_{0}\|\mathcal{E}(w)\|_{\mathcal{M}}) \\ \Rightarrow \quad \inf_{w \in \mathsf{BD}(\Omega)} \|\nabla u - Rw\|_{\mathcal{M}} &\leq C_{3}\operatorname{TGV}_{\alpha}^{2}(u) \\ 3 \text{ With the help of } 1: \quad \Rightarrow \quad \|u\|_{\mathsf{BV}} \leq C_{4}(\|u\|_{1} + \operatorname{TGV}_{\alpha}^{2}(u)) \\ 4 \text{ Finally: } \operatorname{TGV}_{\alpha}^{2}(u) \leq \alpha_{1}\operatorname{TV}(u) \\ &\Rightarrow \quad \|u\|_{1} + \operatorname{TGV}_{\alpha}^{2}(u) \leq C_{5}\|u\|_{\mathsf{BV}} \quad \Box \end{aligned}$

Topological equivalence

Theorem: $\Omega \subset \mathbb{R}^d$ sufficiently smooth \Rightarrow $c \|u\|_{\mathsf{BV}} \le \|u\|_1 + \mathsf{TGV}^2_\alpha(u) \le C \|u\|_{\mathsf{BV}} \quad \forall u \in \mathsf{BGV}^2_\alpha(\Omega)$

Proof:

1 We have $\|u\|_{\mathsf{BV}} \leq C_1 ig(\|
abla u - \mathsf{Rw}\|_{\mathcal{M}} + \|u\|_1ig) \ \forall w \in \mathsf{BD}(\Omega)$

2 Sobolev-Korn inequality + minimum characterization:

 $\begin{aligned} \|\nabla u - Rw\|_{\mathcal{M}} &\leq \|\nabla u - w\|_{\mathcal{M}} + \|w - Rw\|_{1} \\ &\leq C_{3}(\alpha_{1}\|\nabla u - w\|_{\mathcal{M}} + \alpha_{0}\|\mathcal{E}(w)\|_{\mathcal{M}}) \\ \Rightarrow \quad \inf_{w \in \mathsf{BD}(\Omega)} \|\nabla u - Rw\|_{\mathcal{M}} &\leq C_{3}\operatorname{TGV}_{\alpha}^{2}(u) \\ 3 \text{ With the help of } 1: \Rightarrow \|u\|_{\mathsf{BV}} \leq C_{4}(\|u\|_{1} + \operatorname{TGV}_{\alpha}^{2}(u)) \\ 4 \text{ Finally: } \operatorname{TGV}_{\alpha}^{2}(u) \leq \alpha_{1}\operatorname{TV}(u) \\ \Rightarrow \|u\|_{1} + \operatorname{TGV}_{\alpha}^{2}(u) \leq C_{5}\|u\|_{\mathsf{BV}} \quad \Box \end{aligned}$

Existence and stability

Corollary:

• Coercivity: $||u - P_1 u||_{d/(d-1)} \leq C \operatorname{TGV}^2_{\alpha}(u)$ $P_1 \rightarrow \Pi^1$ linear projection on the affine functions Π^1

Theorem:

■
$$1$$

 $\begin{array}{c} 1$

Proof: Direct method + coercivity of TGV_{α}^2

(Ontimization problem

Existence and stability

Corollary:

• Coercivity: $\|u - P_1 u\|_{d/(d-1)} \le C \operatorname{TGV}^2_{\alpha}(u)$ $P_1 \to \Pi^1$ linear projection on the affine functions Π^1

١

Theorem:

■
$$1$$

$$\left. \begin{array}{c} K : L^{p}(\Omega) \to H \\ \text{linear and continuous,} \\ H \text{ Hilbert space} \\ K \text{ injective on } \Pi^{1} \end{array} \right\} \Rightarrow \begin{cases} \text{optimization problem} \\ \min_{u \in L^{p}(\Omega)} \frac{1}{2} \|Ku - f\|^{2} \\ + \text{TGV}_{\alpha}^{2}(u) \\ \text{possesses a solution} \end{cases}$$

Proof: Direct method + coercivity of TGV_{α}^2

Stability:
$$f^n \to f$$
 in $H \Rightarrow \begin{cases} u^n \rightharpoonup u \text{ in } L^p(\Omega) \text{ (subseq.)} \\ \mathsf{TGV}^2_\alpha(u^n) \to \mathsf{TGV}^2_\alpha(u) \end{cases}$

General orders

Next step:

• Generalization with respect to $k \rightsquigarrow$ Examine

$$\mathsf{BD}(\Omega,\mathsf{Sym}^k(\mathbb{R}^d)) = \{ w \in L^1(\Omega,\,\mathsf{Sym}^k(\mathbb{R}^d)) \mid \\ \mathcal{E}(w) \in \mathcal{M}(\Omega,\,\mathsf{Sym}^{k+1}(\mathbb{R}^d)) \}$$

$$\|w\|_{\mathsf{BD}} = \|w\|_1 + \|\mathcal{E}(w)\|_{\mathcal{M}}$$

Symmetric tensor fields of bounded deformation

Theorem: [B. '11] 1 $u \in \mathcal{D}(\Omega, \operatorname{Sym}^{k}(\mathbb{R}^{d}))^{*}$ distribution with $\mathcal{E}(u) = 0$ $\Rightarrow \nabla^{k+1} \otimes u = 0$ in Ω 2 ker(\mathcal{E}) is a subspace of $\Pi^{k}(\Omega, \operatorname{Sym}^{k}(\mathbb{R}^{d}))$

[B. '11]

The spaces $BD(\Omega, Sym^k(\mathbb{R}^d))$

Theorem:

- $\left.\begin{array}{c} u\in\mathcal{D}(\Omega,{\rm Sym}^k(\mathbb{R}^d))^*\\ {\rm distribution \ with \ }\mathcal{E}(u)=0 \end{array}\right\} \quad \Rightarrow \quad \nabla^{k+1}\otimes u=0 \ {\rm in \ }\Omega$
- 2 ker(\mathcal{E}) is a subspace of $\Pi^k(\Omega, \operatorname{Sym}^k(\mathbb{R}^d))$

Furthermore:

- There is a T such that $\nabla^{k+1} \otimes u = T\mathcal{E}(u)$ for smooth u
- The fundamental solution for div *E* reads as:

$$\Gamma_k^\eta = \sum_{l=0}^k (-1)^l {k+1 \choose l+1} \mathcal{E}^l ig(\mathsf{div}^l(\mathcal{E}_{l+1}\eta) ig)$$

 E_m fundamental solution for Δ^m

Theorem: Let $\Omega \subset \mathbb{R}^d$ be a Lipschitz domain

- 1 Trace mapping:
 - $\gamma: \mathsf{BD}(\Omega, \mathsf{Sym}^k(\mathbb{R}^d)) \to L^1(\partial\Omega, \mathsf{Sym}^k(\mathbb{R}^d))$

continuous with respect to strict convergence

2 Gauß-Green theorem:

$$\int_{\Omega} u \cdot \operatorname{div} v \, \mathrm{d}x = \int_{\partial \Omega} ||| (\gamma u \otimes \nu) \cdot v \, \mathrm{d}\mathcal{H}^{d-1} - \int_{\Omega} v \cdot \, \mathrm{d}\mathcal{E}(u)$$

for $u \in \operatorname{BD}(\Omega, \operatorname{Sym}^{k}(\mathbb{R}^{d})), v \in \mathcal{C}^{1}(\Omega, \operatorname{Sym}^{k+1}(\mathbb{R}^{d}))$
3 Zero extension: $Eu \in \operatorname{BD}(\mathbb{R}^{d}, \operatorname{Sym}^{k}(\mathbb{R}^{d}))$ with
 $\mathcal{E}(Eu) = \mathcal{E}(u) - ||| (\gamma u \otimes \nu) \mathcal{H}^{d-1} \vdash \partial\Omega$

Theorem: Let $\Omega \subset \mathbb{R}^d$ be a Lipschitz domain

1 Trace mapping:

 $\gamma:\mathsf{BD}(\Omega,\mathsf{Sym}^k(\mathbb{R}^d)) o L^1(\partial\Omega,\mathsf{Sym}^k(\mathbb{R}^d))$

continuous with respect to strict convergence

2 Gauß-Green theorem: $\int_{\Omega} u \cdot \operatorname{div} v \, dx = \int_{\partial \Omega} |||(\gamma u \otimes \nu) \cdot v \, d\mathcal{H}^{d-1} - \int_{\Omega} v \cdot \, d\mathcal{E}(u)$ for $u \in \operatorname{BD}(\Omega, \operatorname{Sym}^{k}(\mathbb{R}^{d})), v \in \mathcal{C}^{1}(\Omega, \operatorname{Sym}^{k+1}(\mathbb{R}^{d}))$ 3 Zero extension: $Eu \in \operatorname{BD}(\mathbb{R}^{d}, \operatorname{Sym}^{k}(\mathbb{R}^{d}))$ with $\mathcal{E}(Eu) = \mathcal{E}(u) - |||(\gamma u \otimes \nu)\mathcal{H}^{d-1} \sqcup \partial\Omega$

Theorem: Let $\Omega \subset \mathbb{R}^d$ be a Lipschitz domain

- 1 Trace mapping:
 - $\gamma:\mathsf{BD}(\Omega,\mathsf{Sym}^k(\mathbb{R}^d)) o L^1(\partial\Omega,\mathsf{Sym}^k(\mathbb{R}^d))$

continuous with respect to strict convergence

2 Gauß-Green theorem:

 $\int_{\Omega} u \cdot \operatorname{div} v \, \mathrm{d}x = \int_{\partial \Omega} \| (\gamma u \otimes \nu) \cdot v \, \mathrm{d}\mathcal{H}^{d-1} - \int_{\Omega} v \cdot \, \mathrm{d}\mathcal{E}(u)$ for $u \in \operatorname{BD}(\Omega, \operatorname{Sym}^{k}(\mathbb{R}^{d})), v \in \mathcal{C}^{1}(\Omega, \operatorname{Sym}^{k+1}(\mathbb{R}^{d}))$ 3 Zero extension: $Eu \in \operatorname{BD}(\mathbb{R}^{d}, \operatorname{Sym}^{k}(\mathbb{R}^{d}))$ with $\mathcal{E}(Eu) = \mathcal{E}(u) - \| (\gamma u \otimes \nu) \mathcal{H}^{d-1} \sqcup \partial\Omega$

Theorem:

1 Embedding result:

 $\mathsf{BD}(\Omega,\mathsf{Sym}^k(\mathbb{R}^d)) \hookrightarrow L^{d/(d-1)}(\Omega,\mathsf{Sym}^k(\mathbb{R}^d))$

2 Sobolev-Korn inequality: $\|u - Ru\|_{d/(d-1)} \leq C \|\mathcal{E}(u)\|_{\mathcal{M}}$

Theorem:

1 Embedding result:

 $\mathsf{BD}(\Omega,\mathsf{Sym}^k(\mathbb{R}^d)) \hookrightarrow L^{d/(d-1)}(\Omega,\mathsf{Sym}^k(\mathbb{R}^d))$

2 Sobolev-Korn inequality: $\|u - Ru\|_{d/(d-1)} \leq C \|\mathcal{E}(u)\|_{\mathcal{M}}$

Consequently:

Minimum characterization:

$$\mathsf{TGV}_{\alpha}^{k}(u) = \min_{\substack{u_{l} \in \mathsf{BD}(\Omega, \mathsf{Sym}^{l}(\mathbb{R}^{d})), \\ u_{0}=u, u_{k}=0}} \sum_{l=1}^{k} \alpha_{k-l} \int_{\Omega} |\mathcal{E}(u_{l-1}) - u_{l}|$$

$$= \mathsf{Existence of solutions:} \qquad \min_{u \in L^{p}(\Omega)} \frac{\|\mathcal{K}u - f\|_{H}^{2}}{2} + \mathsf{TGV}_{\alpha}^{k}(u)$$

L

Theorem:

[B. '11]

1 Embedding result:

 $\mathsf{BD}(\Omega,\mathsf{Sym}^k(\mathbb{R}^d)) \hookrightarrow L^{d/(d-1)}(\Omega,\mathsf{Sym}^k(\mathbb{R}^d))$

2 Sobolev-Korn inequality: $\|u - Ru\|_{d/(d-1)} \leq C \|\mathcal{E}(u)\|_{\mathcal{M}}$

Consequently:

Minimum characterization:

$$\mathsf{TGV}_{\alpha}^{k}(u) = \min_{\substack{u_{l} \in \mathsf{BD}(\Omega, \mathsf{Sym}^{l}(\mathbb{R}^{d})), \\ u_{0}=u, u_{k}=0}} \sum_{l=1}^{k} \alpha_{k-l} \int_{\Omega} |\mathcal{E}(u_{l-1}) - u_{l}|$$

Existence of solutions:
$$\min_{u \in L^{p}(\Omega)} \frac{\|Ku - f\|_{H}^{2}}{2} + \mathsf{TGV}_{\alpha}^{k}(u)$$

if K is injective on Π^{k-1}

L

 \rightsquigarrow "TV applicable \Rightarrow TGV applicable"

Regularization properties

Joint work with Martin Holler

Theorem:

• u^n solution \sim parameters α^n , data f^n , $\|f^n - f^{\dagger}\| \leq \delta_n$

Multiparameter choice/source condition:

1
$$\alpha_i^n \to 0$$
 and $\delta_i^2 / \alpha_i^n \to 0$
2 $\lim_{n\to\infty} \alpha_i^n / \alpha_{i-1}^n > 0$
3 $Ku^{\dagger} = f^{\dagger}$ for $u^{\dagger} \in BV(\Omega)$

Then: *Convergence:*

 $= \frac{u^n \rightharpoonup^* u^*}{\mathsf{TGV}_{\alpha^*}^{k,l}(u^n) \rightarrow \mathsf{TGV}_{\alpha^*}^k(u^*) }$ subsequentially

• u^* minimizing-TGV^k_{α^*} solution

INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING

Application: Deconvolution

Problem:

Solve u * k = fk convolution kernel

Tikhonov functional: $\min_{u \in L^2(\Omega)} \frac{1}{2} \|u * k - f\|_2^2$ $+ \mathsf{TGV}_{\alpha}^2(u)$

Noisy data f

INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING

Application: Deconvolution

Problem:

Solve u * k = fk convolution kernel

Tikhonov functional: $\min_{u \in L^2(\Omega)} \frac{1}{2} \|u * k - f\|_2^2$ $+ \mathsf{TGV}_{\alpha}^2(u)$

TV-regularized solution

INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING

Application: Deconvolution

Problem:

Solve u * k = fk convolution kernel

Tikhonov functional: $\min_{u \in L^2(\Omega)} \frac{1}{2} \|u * k - f\|_2^2$ $+ \mathsf{TGV}_{\alpha}^2(u)$

 TGV_{α}^{2} -regularized solution

Optimization methods

Exemplarily: Second-order scalar case $TGV_{\alpha}^{2,0} = TGV_{\alpha}^{2}$

$$\min_{u \in L^p(\Omega)} F(u) + \mathsf{TGV}^2_\alpha(u)$$

Approach:

- 1 Discretize with finite differences
- 2 Reformulate as convex-concave saddle-point problem

$$\min_{x \in X} \max_{y \in Y} \langle Ax, y \rangle + \mathcal{G}(x) - \mathcal{F}^*(y)$$

3 Use primal-dual algorithm of [Chambolle/Pock '11]

Optimization methods

Exemplarily: Second-order scalar case $TGV_{\alpha}^{2,0} = TGV_{\alpha}^{2}$

 $\min_{u \in L^p(\Omega)} F(u) + \mathsf{TGV}^2_\alpha(u)$

Approach:

- 1 Discretize with finite differences
- 2 Reformulate as convex-concave saddle-point problem

$$\min_{x \in X} \max_{y \in Y} \langle Ax, y \rangle + \mathcal{G}(x) - \mathcal{F}^*(y)$$

3 Use primal-dual algorithm of [Chambolle/Pock '11]

Optimization methods

Exemplarily: Second-order scalar case $TGV_{\alpha}^{2,0} = TGV_{\alpha}^{2}$

 $\min_{u \in L^p(\Omega)} F(u) + \mathsf{TGV}^2_\alpha(u)$

Approach:

- 1 Discretize with finite differences
- 2 Reformulate as convex-concave saddle-point problem

$$\min_{x \in X} \max_{y \in Y} \langle Ax, y \rangle + \mathcal{G}(x) - \mathcal{F}^*(y)$$

3 Use primal-dual algorithm of [Chambolle/Pock '11]

$$\begin{cases} y^{n+1} = (I + \sigma \partial \mathcal{F}^*)^{-1} (y^n + \sigma A \overline{x}^n) \\ x^{n+1} = (I + \tau \partial \mathcal{G})^{-1} (x^n - \tau A^* y^{n+1}) \\ \overline{x}^{n+1} = 2x^{n+1} - x^n \end{cases}$$

Finite difference approximations ∇^h, E^h, div^h = −(∇^h)* etc.
Supremum definition of TGV²:

$$\min_{u} \max_{v} F(u) + \langle u, (\operatorname{div}^{h})^{2} v \rangle \\ - I_{\{ \|v\|_{\infty} \leq \alpha_{0} \}}(v) - I_{\{ \|\omega\|_{\infty} \leq \alpha_{1} \}}(\operatorname{div}^{h} v)$$

Finite difference approximations ∇^h, E^h, div^h = -(∇^h)* etc.
 Supremum definition of TGV²:

$$\min_{u} \max_{v} F(u) + \langle u, (\operatorname{div}^{h})^{2} v \rangle - I_{\{\|v\|_{\infty} \leq \alpha_{0}\}}(v) - I_{\{\|\omega\|_{\infty} \leq \alpha_{1}\}}(\operatorname{div}^{h} v)$$

Introduce constraint $\omega = \operatorname{div}^h v$ and Lagrange multiplier w

Finite difference approximations ∇^h, *E^h*, div^h = −(∇^h)* etc.
Supremum definition of TGV²:

$$\min_{u,w} \max_{\mathbf{v},\omega} F(u) + \langle u, \operatorname{div}^h \omega \rangle + \langle w, \operatorname{div}^h v - \omega \rangle \\ - I_{\{ \|v\|_{\infty} \le \alpha_0 \}}(v) - I_{\{ \|\omega\|_{\infty} \le \alpha_1 \}}(\omega)$$

Introduce constraint $\omega = \operatorname{div}^h v$ and Lagrange multiplier w

Finite difference approximations ∇^h, E^h, div^h = −(∇^h)* etc.
Supremum definition of TGV²:

$$\min_{u,w} \max_{v,\omega} F(u) + \langle u, \operatorname{div}^h \omega \rangle + \langle w, \operatorname{div}^h v - \omega \rangle \\ - I_{\{ \|v\|_{\infty} \le \alpha_0 \}}(v) - I_{\{ \|\omega\|_{\infty} \le \alpha_1 \}}(\omega)$$

Introduce constraint $\omega = \operatorname{div}^h v$ and Lagrange multiplier w

$$\begin{aligned} x &= \begin{bmatrix} u \\ w \end{bmatrix}, \qquad y = \begin{bmatrix} v \\ \omega \end{bmatrix}, \qquad A &= \begin{bmatrix} 0 & -\nabla^h \\ -\mathcal{E}^h & -I \end{bmatrix}, \\ \mathcal{G}(u, w) &= F(u), \qquad \mathcal{F}^*(v, \omega) = I_{\{\|v\|_{\infty} \le \alpha_0\}}(v) + I_{\{\|\omega\|_{\infty} \le \alpha_1\}}(\omega) \end{aligned}$$

IR '12

Primal-dual algorithm 1

Iteration:

ī

$$\begin{aligned} \omega^{n+1} &= P_{\{\|\cdot\|_{\infty} \leq \alpha_1\}} \left(\omega^n + \sigma (\nabla^h \bar{u}^n - \bar{w}^n) \right) \\ v^{n+1} &= P_{\{\|\cdot\|_{\infty} \leq \alpha_0\}} \left(v^n + \sigma \mathcal{E}^h(\bar{w}^n) \right) \end{aligned} \right\} \text{ dual update} \\ u^{n+1} &= (I + \tau \partial F)^{-1} (u^n + \tau \operatorname{div}^h \omega^{n+1}) \\ w^{n+1} &= w^n + \tau (\operatorname{div}^h v^{n+1} + \omega^{n+1}) \end{aligned} \right\} \text{ primal update} \\ i^{n+1} &= 2u^{n+1} - u^n, \quad \bar{w}^{n+1} = 2w^{n+1} - w^n \end{aligned} \} \text{ extragradient}$$

[R '12]

Primal-dual algorithm 1

Iteration:

ī

$$\begin{split} & \omega^{n+1} = P_{\{\|\cdot\|_{\infty} \leq \alpha_1\}} \left(\omega^n + \sigma (\nabla^h \bar{u}^n - \bar{w}^n) \right) \\ & v^{n+1} = P_{\{\|\cdot\|_{\infty} \leq \alpha_0\}} \left(v^n + \sigma \mathcal{E}^h(\bar{w}^n) \right) \end{split} \right\} \text{ dual update} \\ & u^{n+1} = (I + \tau \partial F)^{-1} (u^n + \tau \operatorname{div}^h \omega^{n+1}) \\ & w^{n+1} = w^n + \tau (\operatorname{div}^h v^{n+1} + \omega^{n+1}) \end{aligned} \right\} \text{ primal update} \\ & u^{n+1} = 2u^{n+1} - u^n, \quad \bar{w}^{n+1} = 2w^{n+1} - w^n \end{cases} \text{ extragradient}$$

P_{{||·||∞≤α₀}, P_{{||·||∞≤α₁}</sub> amount to pointwise operations
 (I + τ∂F)⁻¹ resolvent mapping → assumed to be known
 Converges for appropriate choice of σ, τ > 0
 [Chambolle/Pock '11]

Applications

Examples for Algorithm 1:

Primary application: Denoising problems

Applications

Examples for Algorithm 1:

Primary application: Denoising problems

Applications

Examples for Algorithm 1:

Primary application: Denoising problems

Primal-dual algorithm 2 Alternative:

- Additional dual variable: F(u) = max ⟨Ku, p⟩ + F̃(u) G(p)
 Needs only resolvents w.r.t. ∂G, ∂F̃, not (I + τ∂F)⁻¹

Primal-dual algorithm 2 Alternative:

- Additional dual variable: F(u) = max ⟨Ku, p⟩ + F̃(u) G(p)
 Needs only resolvents w.r.t. ∂G, ∂F̃, not (I + τ∂F)⁻¹

Applications

Examples for Algorithm 2:

Applications

Examples for Algorithm 2:

1 Introduction

- 2 Total Generalized Variation
 - Existence and stability for second order
 - Regularization theory for general orders
 - Optimization algorithms
- 3 Applications
 - Compressive imaging
 - JPEG(2000) decompression and zooming
 - Quantitative susceptibility mapping
 - Dual energy CT denoising

4 Summary

Problem:

 Reconstruct incomplete data with respect to a given basis

Variational formulation:

- $\min_{Au=f} R(u)$
- A basis analysis operator
- R "sparsifying" penalty

"Single-pixel camera"

1600 measurements

Problem:

 Reconstruct incomplete data with respect to a given basis

Variational formulation:

- $\min_{Au=f} R(u)$
- A basis analysis operator
 - R "sparsifying" penalty

Compressed sensing:

- $\blacksquare R(u) = \|u\|_1$
- Captures solution with minimal "L⁰-norm" with high probability

"Single-pixel camera"

1600 measurements

Problem:

 Reconstruct incomplete data with respect to a given basis

Variational formulation:

- $\min_{Au=f} R(u)$
- A basis analysis operator
- R "sparsifying" penalty

Compressed sensing:

- $\blacksquare R(u) = \|u\|_1$
- Captures solution with minimal "L⁰-norm" with high probability

In particular: ■ R(u) = TV(u) "Gradient sparsity"

"Single-pixel camera"

1600 measurements

Problem:

 Reconstruct incomplete data with respect to a given basis

Variational formulation:

- $\min_{Au=f} R(u)$
- A basis analysis operator
- R "sparsifying" penalty

Compressed sensing:

- $R(u) = ||u||_1$
- Captures solution with minimal "L⁰-norm" with high probability
- In particular: ■ R(u) = TV(u) "Gradient sparsity" ~→ Use TGV as penalty

Example

TV-based reconstruction:

 Test data:
 From "Rice Single-Pixel Camera Project" http://dsp.rice.edu/cscamera

 Reconstruction from varying number of samples

Algorithm:

Primal-dual method 2

768 samples

384 samples

256 samples

Example

TGV-based reconstruction:

 Test data:
 From "Rice Single-Pixel Camera Project" http://dsp.rice.edu/cscamera

 Reconstruction from varying number of samples

Algorithm:

Primal-dual method 2

8-39 () |

768 samples

384 samples

256 samples

192 samples

Original image (8 bpp)

JPEG compression scheme:

- Lossy procedure
- High compression
 - → disturbing artifacts (ringing, blocking)

JPEG image (0.062 bpp)

JPEG compression scheme: Lossy procedure

 High compression
 → disturbing artifacts (ringing, blocking)

JPEG image (0.062 bpp)

JPEG compression scheme:

- Lossy procedure
- High compression
 → disturbing artifacts (ringing, blocking)

Goal:

- Remove artifacts
- Respect given information

JPEG image (0.062 bpp)

JPEG compression scheme:

- Lossy procedure
- High compression
 → disturbing artifacts (ringing, blocking)

Goal:

- Remove artifacts
- Respect given information

→ Use TGV image model

JPEG decompression model

JPEG compression scheme:

Problem:

- Many images give same JPEG object ~> convex set C
- Standard decompression
 - \rightsquigarrow particular choice \rightsquigarrow artifacts

JPEG decompression model

JPEG compression scheme:

Problem:

- Many images give same JPEG object → convex set *C*
- Standard decompression
 - \rightsquigarrow particular choice \rightsquigarrow artifacts
- Idea: Optimize over all possible choices

32 / 51

JPEG decompression model

JPEG compression scheme:

Problem:

- Many images give same JPEG object → convex set *C*
- Standard decompression
 - \rightsquigarrow particular choice \rightsquigarrow artifacts
- Idea: Optimize over all possible choices

```
TGV Model:
\min_{u \in L^{2}(\Omega)} \frac{\mathsf{TGV}_{\alpha}^{2}(u)}{+I_{C}(u)}
```


Decompression of grayscale images:

0.062 bpp

Decompression of grayscale images:

JPEG-TGV decompression

0.062 bpp

Decompression of color images:

0.051 bpp

Decompression of color images:

0.051 bpp

Towards real-life application

Software:

- Handles all flavors of JPEG (grayscale/color, chroma subsampling, etc.)
- Fast OpenMP
 + GPU (CUDA)
 implementation
- Interactive applet available

Extension to JPEG 2000

JPEG 2000 compression scheme:

=10

-4

=16 =92

Extension to JPEG 2000

JPEG 2000 compression scheme:

Uncompressed image

Source image set: Same structure

Bit-level coding JPEG2000 file

1000000011

=10

-4

=16 =92

Extension to JPEG 2000

JPEG 2000 compression scheme:

Uncompressed image

Wavelet-Transformed image

Bit-level coding JPEG2000 file

1000000011

< ∄ > < ≣ >

JPEG 2000: Example

Decompression of color images:

0.019 bpp

standard decompression

JPEG 2000: Example

Decompression of color images:

JPEG2000-TGV decompression

0.019 bpp

Free extra: Wavelet zooming

JPEG 2000:

- Approximation coefficients (+ precision)
- Some wavelet coefficients (+ precision)

Wavelet zooming:

- Approximation coefficients (full precision)
- No wavelet coefficients

 \rightsquigarrow same framework can be used

Wavelet zooming: Example

Test data:

Barbara's headscarf

Zooming: • $64 \times 64 \rightarrow 256 \times 256$

Quantitative susceptibility mapping

Joint work with Christian Langkammer

Motivation:

- Measure magnetic susceptibility χ with MRI ~> quantification of specific biomarkers
- Can be obtained from 3D GRE phase data ~→ reconstruction is a challenging problem

State of the art:

- Multi-step reconstruction procedure
- Last step: Regularized solution of a deconvolution problem

Aims:

- Regularize with TGV
- Develop efficient algorithm

- Three-step procedure:
- 1 Unwrap phase data $\varphi_0^{\rm wrap} \to \varphi_0$
- 2 Subtract harmonic background field, e.g.

$$\begin{split} & \min_{\varphi^{\text{bg}}} \ \frac{1}{2} \| \varphi^{\text{bg}} - \varphi_0 \|_2^2 \quad \text{subject to} \quad \Delta \varphi^{\text{bg}} = 0 \\ \varphi^{\text{qsm}} = \varphi_0 - \varphi^{\text{bg}} \text{ for optimal } \varphi^{\text{bg}} \end{split}$$

3 Perform regularized deconvolution

$$\begin{split} \min_{\chi} \quad \frac{1}{2} \|\chi * \delta - c\varphi^{qsm}\|_2^2 + \alpha R(\chi) \\ (\mathcal{F}\delta)(k_x, k_y, k_z) &= \frac{\frac{1}{3}(k_x^2 + k_y^2) - \frac{2}{3}k_z^2}{k_x^2 + k_y^2 + k_z^2}, \quad c = \frac{1}{2\pi T_E \gamma B_0} \\ \text{optimal } \chi \rightsquigarrow \text{susceptibility map} \end{split}$$

Three-step procedure:

- 1 Unwrap phase data $\varphi_0^{\rm wrap} \to \varphi_0$
- **2** Subtract harmonic background field, e.g.

$$\begin{split} \min_{\varphi^{\rm bg}} \ \frac{1}{2} \|\varphi^{\rm bg} - \varphi_0\|_2^2 \quad \text{subject to} \quad \Delta \varphi^{\rm bg} = 0 \\ \varphi^{\rm qsm} = \varphi_0 - \varphi^{\rm bg} \text{ for optimal } \varphi^{\rm bg} \end{split}$$

3 Perform regularized deconvolution

$$\begin{split} \min_{\chi} \quad \frac{1}{2} \|\chi * \delta - c\varphi^{qsm}\|_2^2 + \alpha R(\chi) \\ (\mathcal{F}\delta)(k_x, k_y, k_z) &= \frac{\frac{1}{3}(k_x^2 + k_y^2) - \frac{2}{3}k_z^2}{k_x^2 + k_y^2 + k_z^2}, \quad c = \frac{1}{2\pi T_E \gamma B_0} \\ \text{optimal } \chi \rightsquigarrow \text{susceptibility map} \end{split}$$

Three-step procedure:

- 1 Unwrap phase data $\varphi_0^{\rm wrap} \to \varphi_0$
- 2 Subtract harmonic background field, e.g.

$$\begin{split} & \min_{\varphi^{\text{bg}}} \ \frac{1}{2} \| \varphi^{\text{bg}} - \varphi_0 \|_2^2 \quad \text{subject to} \quad \Delta \varphi^{\text{bg}} = 0 \\ \varphi^{\text{qsm}} = \varphi_0 - \varphi^{\text{bg}} \text{ for optimal } \varphi^{\text{bg}} \end{split}$$

3 Perform regularized deconvolution

$$\begin{split} \min_{\chi} \quad \frac{1}{2} \|\chi * \delta - c\varphi^{qsm}\|_2^2 + \alpha R(\chi) \\ (\mathcal{F}\delta)(k_x, k_y, k_z) &= \frac{\frac{1}{3}(k_x^2 + k_y^2) - \frac{2}{3}k_z^2}{k_x^2 + k_y^2 + k_z^2}, \quad c = \frac{1}{2\pi T_E \gamma B_0} \\ \text{optimal } \chi \rightsquigarrow \text{susceptibility map} \end{split}$$

Three-step procedure:

- 1 Unwrap phase data $\varphi_0^{\rm wrap} \to \varphi_0$
- 2 Subtract harmonic background field, e.g.

$$\begin{split} & \min_{\varphi^{\text{bg}}} \ \frac{1}{2} \| \varphi^{\text{bg}} - \varphi_0 \|_2^2 \quad \text{subject to} \quad \Delta \varphi^{\text{bg}} = 0 \\ \varphi^{\text{qsm}} = \varphi_0 - \varphi^{\text{bg}} \text{ for optimal } \varphi^{\text{bg}} \end{split}$$

3 Perform regularized deconvolution

$$\begin{split} \min_{\chi} \quad \frac{1}{2} \|\chi * \delta - c\varphi^{\mathsf{qsm}}\|_2^2 + \alpha R(\chi) \\ (\mathcal{F}\delta)(k_x, k_y, k_z) &= \frac{\frac{1}{3}(k_x^2 + k_y^2) - \frac{2}{3}k_z^2}{k_x^2 + k_y^2 + k_z^2}, \quad c = \frac{1}{2\pi T_E \gamma B_0} \\ \text{optimal } \chi \rightsquigarrow \text{susceptibility map} \end{split}$$

 \rightsquigarrow Is a single-step variational approach possible?

Integrative variational modelling

Ingredients:

■ Applying Δ to the inverse problem χ * δ = cφ^{qsm} yields wave-equation-like partial differential equation:

$$\Box \chi = \frac{1}{3} \Big(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - 2 \frac{\partial^2}{\partial z^2} \Big) \chi = c \Delta \varphi^{qsm}$$

The background field is harmonic:

$$\Rightarrow \quad \Delta arphi^{\mathsf{qsm}} = \Delta arphi_0 \quad ext{ on brain mask } \Omega'$$

• $\Delta \varphi_0$ can be obtained from the wrapped phase:

$$\Delta \varphi_0 = \mathsf{Imag} \big((\Delta e^{i \varphi_0^{\mathsf{wrap}}}) e^{-i \varphi_0^{\mathsf{wrap}}} \big) \qquad [Schofield/Zhu ~'03]$$

Integrative variational modelling

Ingredients:

• Applying Δ to the inverse problem $\chi * \delta = c \varphi^{qsm}$ yields wave-equation-like partial differential equation:

$$\Box \chi = \frac{1}{3} \Big(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - 2 \frac{\partial^2}{\partial z^2} \Big) \chi = c \Delta \varphi^{qsm}$$

The background field is harmonic:

 $\Rightarrow \quad \Delta \varphi^{\mathsf{qsm}} = \Delta \varphi_0 \quad \text{ on brain mask } \Omega'$

• $\Delta \varphi_0$ can be obtained from the wrapped phase:

$$\Delta \varphi_{0} = \text{Imag} \left(\left(\Delta e^{i \varphi_{0}^{\text{wrap}}} \right) e^{-i \varphi_{0}^{\text{wrap}}} \right) \qquad [Schofield/Zhu ~'03]$$

Integrative variational modelling

Ingredients:

• Applying Δ to the inverse problem $\chi * \delta = c \varphi^{qsm}$ yields wave-equation-like partial differential equation:

$$\Box \chi = \frac{1}{3} \Big(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - 2 \frac{\partial^2}{\partial z^2} \Big) \chi = c \Delta \varphi^{\mathsf{qsm}}$$

The background field is harmonic:

$$\Rightarrow \quad \Delta arphi^{\mathsf{qsm}} = \Delta arphi_0 \quad ext{ on brain mask } \Omega'$$

• $\Delta \varphi_0$ can be obtained from the wrapped phase:

$$\Delta \varphi_{0} = \text{Imag}((\Delta e^{i\varphi_{0}^{\text{wrap}}})e^{-i\varphi_{0}^{\text{wrap}}}) \qquad [Schofield/Zhu ~'03]$$

Integrative variational modelling

Ingredients:

• Applying Δ to the inverse problem $\chi * \delta = c \varphi^{qsm}$ yields wave-equation-like partial differential equation:

$$\Box \chi = \frac{1}{3} \Big(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - 2 \frac{\partial^2}{\partial z^2} \Big) \chi = c \Delta \varphi^{\mathsf{qsm}}$$

The background field is harmonic:

$$\Rightarrow \quad \Delta arphi^{\mathsf{qsm}} = \Delta arphi_0 \quad ext{ on brain mask } \Omega'$$

• $\Delta \varphi_0$ can be obtained from the wrapped phase:

$$\Delta \varphi_0 = \text{Imag} \left(\left(\Delta e^{i \varphi_0^{\text{wrap}}} \right) e^{-i \varphi_0^{\text{wrap}}} \right) \qquad [Schofield/Zhu ~'03]$$

Solve:
$$\Box \chi = c \Delta \varphi_0$$
 in Ω'

The variational problem

Objective functional:

Discrepancy: $\frac{1}{2} \|\psi\|_2^2$

with $\Delta \psi = \Box \chi - c \Delta \varphi_0$ on brain mask Ω'

Regularization of χ : TGV of second order

The variational problem

Objective functional:

Discrepancy: $\frac{1}{2} \|\psi\|_2^2$

with $\Delta \psi = \Box \chi - c \Delta \varphi_0$ on brain mask Ω'

Regularization of χ : TGV of second order

Integrative TGV-QSM reconstruction: $\begin{cases} \min_{\chi,\psi} \ \frac{1}{2} \int_{\Omega'} |\psi|^2 \ dx + TGV_{\alpha}^2(\chi) \\ \text{subject to } \Delta \psi = \Box \chi - c \Delta \varphi_0 \text{ on } \Omega' \end{cases}$

Numerical method: Primal-dual algorithm 2
Essentially a one-step approach
~> robust with respect to noise

TGV-QSM

Numerical example

TGV-QSM reconstruction:

■ 3D EPI, resolution 1mm³, size 230x230x176, TA 29 sec

phase

magnitude

Numerical example

TGV-QSM reconstruction:

■ 3D EPI, resolution 1mm³, size 230x230x176, TA 29 sec

magnitude phase TGV-QSM

Application: Dual energy CT

Joint work with Michael Pienn

Dual energy CT:

- Two X-ray sources with different spectra
- Two images are acquired
- Allows to differentiate and quantify contrast agent concentration
- Facilitates diagnosis in many cases
- Reconstructions are noisy due to low dose

Assessment of lung perfusion

R

Important application:

- Diagnosis of pulmonary embolism
- Contrast agent concentration lower in affected areas of the lung

Assessment of lung perfusion

Important application:

- Diagnosis of pulmonary embolism
- Contrast agent concentration lower in affected areas of the lung
- Can be seen in the difference image

Assessment of lung perfusion

Important application:

- Diagnosis of pulmonary embolism
- Contrast agent concentration lower in affected areas of the lung
- Can be seen in the difference image

Dual energy CT: Denoising

Problem setup:

- Given: Two noisy image sequences A_0 , B_0 (3D data set)
- Base + difference image ~→ BGV²-images
- Prevent contrast change \rightsquigarrow Use L^1 discrepancy

Minimization problem:

$$\min_{(A,B)\in L^{1}(\Omega)^{2}} \|A - A_{0}\|_{1} + \|B - B_{0}\|_{1} + \mathsf{TGV}_{\alpha}^{2}(B) + \mathsf{TGV}_{\alpha}^{2}(A - B)$$

Numerical realization:

 Primal-dual algorithm 1 (with a slight modification)

INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING

Dual energy CT: Example

Dual energy CT: Example

$$A_0 - B_0$$
 $A - B$

1 Introduction

- 2 Total Generalized Variation
 - Existence and stability for second order
 - Regularization theory for general orders
 - Optimization algorithms
- 3 Applications
 - Compressive imaging
 - JPEG(2000) decompression and zooming
 - Quantitative susceptibility mapping
 - Dual energy CT denoising

4 Summary

Summary

- Total generalized variation
 - Consistent model for piecewise smooth images
 - Functional-analytic framework for regularization of inverse problems is available
- Computational methods
 - Two variants of a flexible primal-dual algorithm
 - Easy to implement & suitable for parallelization

Imaging applications:

- 1 Denoising and deblurring
- 2 Compressive imaging
- 3 JPEG(2000) decompression and wavelet zooming

Medical applications:

- 1 Quantitative susceptibility mapping
- 2 Dual energy CT

\rightsquigarrow high-quality reconstructions

INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING

References

K. Bredies, K. Kunisch and T. Pock. *Total generalized variation*. SIAM Journal on Imaging Sciences 3(3):492–526, 2010.

K. Bredies and T. Valkonen.

Inverse problems with second-order total generalized variation constraints.

Proceedings of SampTA 2011 — 9th International Conference on Sampling Theory and Applications, Singapore, 2011.

K. Bredies.

Symmetric tensor fields of bounded deformation.

Annali di Matematica Pura ed Applicata, 192(5):815-851, 2013.

K. Bredies.

Recovering piecewise smooth multichannel images by minimization of convex functionals with total generalized variation penalty. To appear in Lecture Notes in Computer Science, 2012. Ē

.

K. Bredies and M. Holler.

Regularization of linear inverse problems with total generalized variation. SFB MOBIS report 13-09, 2013.

K. Bredies and M. Holler.

Artifact-free decompression and zooming of JPEG compressed images with total generalized variation.

Communications in Computer and Information Science 359:242–258, 2013.

K. Bredies and M. Holler.

A TGV regularized wavelet based zooming model.

Lecture Notes in Computer Science 7893:149–160, 2013.

K. Bredies, F. Knoll and C. Langkammer.

TGV regularization for variational approaches to quantitative susceptibility mapping. Proceedings of the 2nd Workshop on MRI

Phase Contrast & Quantitative Susceptibility Mapping, Ithaca 2013, 45–48, 2013.