
Variational Image Analysis Using
Wasserstein-Distance Based Priors

Christoph Schnörr,  Paul Swoboda

Image and Pattern Analysis Group
Heidelberg University

FGMIA
Jan 13-15, Paris



1248 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  19,  NO.  11,  NOVEMBER  1997

Ul(I) = yl(—xI) + yl(—yI),    yl(x) = amin(q2, x2)    (20)

Ut(I) = yt(—xI) + yt(—yI),   yt(x) = ax2/(1 + cx2)   (21)

Us(I) = the four-scale energy in (12)                   (22)

yl() and yt() are the line-process and T-function displayed
in Fig. 1b and Fig. 1c, respectively.

Fig. 16 demonstrates the results: The original image is
the lobster boat displayed in Fig. 2. It is normalized to have
intensity in [0, 31] and Gaussian noise from N(0, 25) are
added. The distorted image is displayed in Fig. 16a, where
we keep the image boundary noise-free for the convenience
of boundary condition. The restored images using pl(I),
pt(I), and ps(I) are shown in Fig. 16b, Fig. 16c, and Fig. 16d,
respectively. ps(I), which is the only model with a reaction
term, appears to have the best effect in recovering the boat,
especially the top of the boat, but it also enhances the water.

Fig. 16. (a) The noise distorted image. (b)-(d) Restored images by prior
models p Il a f , p It a f , and p Is a f , respectively.

5.2 Experiment II
In many applications, i.i.d. Gaussian models for distortions
are not sufficient. For example, in Fig. 17a, the tree branches
in the foreground will make image segmentation and object
recognition extremely difficult, because they cause strong
edges across the image. Modeling such clutter is a chal-
lenging problem in many applications. In this paper, we
only consider clutter as two-dimensional pattern, despite its
geometry and 3D structure.

We collected a set of images of buildings and a set of im-
ages of trees all against clean background—the sky. For the
tree images, we translate the image intensities to [-31, 0],
i.e., zero for sky. In this case, since the trees are always

darker than the building, thus the negative intensity will
approximately take care of the occlusion effects. We learn
the Gibbs distributions for each set respectively in the
pyramid, then such models are respectively adopted as the
prior distribution and the likelihood as in (18). We recov-
ered the underlying images by maximizing a posteriori
distribution using the stochastic process.

(a)                                                       (b)
Fig. 17. (a) The observed image. (b) The restored image using six filters.

For example, Fig. 17b is computed using six filters with
two filters for I: {—x,0, —y,0}, and four filters for IC: {d, —x, —y,
Gcos(2, 30o)}, i.e., the potential for IC is:
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In the above equation, f*(x) and y*(x) are fit to the potential
functions learned from the set of tree images:
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So, the energy term f*(I(x, y)) forces zero intensity for the
clutter image while allowing for large negative intensities
for the dark tree branches.
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Fig. 18b is computed using eight filters with four filters
for I and four filters for IC. Thirteen filters are used for
Fig. 19 where the clutter is much heavier.

As a comparison, we run the anisotropic diffusion proc-
ess [25] on Fig. 19a, and images at iterations t = 50, 100, 300
are displayed in Fig. 20. As we can see that as t Æ •, I(t)
becomes a flat image. A robust anisotropic diffusion equa-
tion is recently reported in [2].
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(a)                                                       (b)
Fig. 18. (a) An observed image. (b) The restored image using eight
filters.

(a)                                                       (b)
Fig. 19. (a) The observed image. (b) The restored image using 13
filters.

                (a)                                 (b)                                  (c)
Fig. 20. Images by anisotropic diffusion at iteration (a) t = 50, (b) t = 100,
and (c) t = 300 for comparison.

6 CONCLUSION
In this paper, we studied the statistics of natural images,
based on which a novel theory is proposed for learning
the generic prior model—the universal statistics of real
world scenes. We argue that the same strategy developed
in this paper can be used in other applications. For exam-
ple, learning probability models for MRI images and 3D
depth maps.

The learned prior models demonstrate some important
properties such as the “inverted” potentials terms for pat-
terns formation and image enhancement. The expressive
power of the learned Gibbs distributions allow us to model
structured noise–clutter in natural scenes. Furthermore, our
prior learning method provides a novel framework for de-
signing reaction-diffusion equations based on the observed
images in a given application, without modeling the physi-
cal or chemical processes as people did before [33].

Although the synthesized images bear important fea-
tures of natural images, they are still far from realistic ones.
In other words, these generic prior models can do very little
beyond image restoration. This is mainly due to the fact
that all generic prior models are assumed to be translation
invariant, and this homogeneity assumption is unrealistic.
We call the generic prior models studied in this paper the
first-level prior. A more sophisticated prior model should
incorporate concepts like object geometry, and we call such
prior models second-level priors. Diffusion equations derived
from this second-level prior are studied in image segmen-
tation [39], and in scale space of shapes [16]. A discussion of
some typical diffusion equations is given in [22]. It is our
hope that this article will stimulate further investigations on
building more realistic prior models as well as sophisticated
PDEs for visual computation.
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Fig. 20. Images by anisotropic diffusion at iteration (a) t = 50, (b) t = 100,
and (c) t = 300 for comparison.
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Fig. 1. Three existing forms for y(). (a) Quadratic: y(x) = ax2. (b) Line process: y(x) = a min(q2, x2). (c) T-function: y x
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In the above equation, S = {F(1), F(2), ..., F(K)} is a set of linear

filters, and L = {l(1)(), l(2)(), ..., l(K)()} is a set of potential
functions on the features extracted by S. The central prop-
erty of this class of models is that they can reproduce the

marginal distributions of F(a)
* I estimated over a set of the

training images I—while having the maximum entropy—
and the best set of features {F(1), F(2), ..., F(K)} is selected by
minimizing the entropy of p(I) [41]. The conclusion of our
earlier papers is that, for an appropriate choice of a small
set of filters S, random samples from these models can du-
plicate very general classes of textures—as far as normal
human perception is concerned. Recently, we found that
similar ideas of model inference using maximum entropy
have also been used in natural language modeling [1].

In this paper, we want to study to what extent probabil-
ity distributions of this type can be used to model generic
natural images, and we try to answer the three questions
raised above.

We start by studying the statistics of a database of 44 real
world images, and then we describe experiments in which
Gibbs distributions in the form of (2) were constructed to
duplicate the observed statistics. The learned potential
functions l(a)(), a = 1, 2, ..., K can be classified into two cate-
gories: diffusion terms which are similar to Fig. 1c, and reac-
tion terms which, in contrast to all previous models, have
inverted potentials (i.e., l(x) decreasing as a function of
|x|).

We find that the partial differential equations given by
gradient descent on U(I; L, S) are essentially reaction-
diffusion equations, which we call the Gibbs Reaction and
Diffusion Equations (Grade). In Grade, the diffusion compo-
nents produce denoising effects which are similar to the
anisotropic diffusion [25], while reaction components form
patterns and enhance preferred image features.

The learned prior models are applied to the following
applications.

First, we run the Grade starting with white noise images
and demonstrate how Grade can easily generate canonical
texture patterns, such as leopard blobs and zebra stripe, as
the Turing reaction-diffusion equations do [34], [38]. Thus

our theory provides a new method for designing PDEs for
pattern synthesis.

Second, we illustrate how the learned models can be
used for denoising, image enhancement, and clutter re-
moval by careful choice of both prior and noise models of
this type, incorporating the appropriate features extracted
at various scales and orientations. The computation simu-
lates a stochastic process—the Langevin equations—for
sampling the posterior distribution.

This paper is arranged as follows: Section 2 presents a
general theory for prior learning. Section 3 demonstrates
some experiments on the statistics of natural images and
prior learning. Section 4 studies the reaction-diffusion
equations. Section 5 demonstrates experiments on denois-
ing, image enhancement and clutter removal. Finally, Sec-
tion 6 concludes with a discussion.

2 THEORY OF PRIOR LEARNING
2.1 Goal of Prior Learning and Two Extreme Cases
We define an image I on an N ¥ N lattice L to be a function
such that for any pixel (x, y), I(x, y) Œ !, and ! is either an
interval of R or !!Ã Z. We assume that there is an underly-

ing probability distribution f(I) on the image space !N 2

 for
general natural images—arbitrary views of the world. Let
NI n Mobs

n
obs= =I , , , . . . ,1 2o t be a set of observed images

which are independent samples from f(I). The objective of
learning a generic prior model is to look for common features and
their statistics from the observed natural images. Such features
and their statistics are then incorporated into a probability distri-
bution p(I) as an estimation of f(I), so that p(I), as a prior
model, will bias vision algorithms against image features which
are not typical in natural images, such as noise distortion and
blurring. For this objective, it is reasonable to assume that
any image features have an equal chance to occur at any
location, so f(I) is translation invariant with respect to (x, y).
We will discuss the limits of this assumption in Section 6.

To study the properties of images In
obs n M, , , . . . ,= 1 2o t,

we start from exploring a set of linear filters S = {F(a), a = 1,
2, ..., K} which are characteristic of the observed images.
The statistics extracted by S are the empirical marginal dis-
tributions (or histograms) of the filter responses.
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(a) (b) (c)

Fig. 6. (a) mx,s(z), s = 0, 1, 2. (b) logmx,s(z), s = 0 (solid), s = 1 (dash-dotted), and s = 2 (dashed). (c) Histograms of a filtered uniform noise image at
scales: s = 0 (solid curve), s = 1 (dash-dotted curve), and s = 2 (dashed curve).

(a) (b) (c)
Fig. 7. The three learned potential functions for filters. (a) D. (b) —x . (c) —y . Dashed curves are the fitting functions:

(a) y 1
1.32

2.1 1 1 1 4.8x xa f a f b ge j= - +/ / . (b) y 2
1.5

1.25 1 1 1 2.8x xa f a f b ge j= - +/ / . (c) y 3
1.5

1.95 1 1 1 / 2.8x xa f a f b ge j= - +/ .

Fig. 8. A typical sample of p3(I) (256 ¥ 256 pixels).

3.2.2 Experiment II
It is clear that we need large-scale filters to do better. Rather
than using the large scale Gabor filters, we chose to use —x

and —y on four different scales and impose explicitly the
scale invariant property that we find in natural images.
Given an image I defined on an N ¥ N lattice L, we build a
pyramid in the same way as before. Let I[s], s = 0, 1, 2, 3 be
four layers of the pyramid. Let Hx,s(z, x, y) denote the histo-

gram of —xI
[s](x, y) and Hy,s(z, x, y) the histogram of —yI

[s](x, y).
We ask for a probability model p(I) which satisfies

E H z x y z z x y L sp x s sIa f c h a f c h, , , , , , , , ,= " " Œ =m 0 1 2 3

E H z x y z z x y L sp y s sIa f c h a f c h, , , , , , , , ,= " " Œ =m 0 1 2 3

where Ls is the image lattice at level s, and m za f  is the aver-

age of the observed histograms of —xI
[s] and —yI

[s] on all 44
natural images at all scales. This results in a maximum en-
tropy distribution ps(I) with energy of the following form,
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which are independent samples from f(I). The objective of
learning a generic prior model is to look for common features and
their statistics from the observed natural images. Such features
and their statistics are then incorporated into a probability distri-
bution p(I) as an estimation of f(I), so that p(I), as a prior
model, will bias vision algorithms against image features which
are not typical in natural images, such as noise distortion and
blurring. For this objective, it is reasonable to assume that
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location, so f(I) is translation invariant with respect to (x, y).
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Figure 3.10: Local binary 3 × 3 configurations corresponding to horizontal and vertical lines,

possibly meeting in a corner. These templates together with the empty template were used to

define the binary graphical model p(x, θ) illustrated by Figure 3.11.

hold under assumption (3.7), checking convergence and determining an appropriate number n0

of iterations for the “burn in” phase is rather difficult in practice. Likewise, in order to generate

i.i.d. samples {xi}ni=1 ∼ p(x, θ), either independent Markov chains have to be run, order a single

Markov chain has to be subsampled with sufficiently large intervals, in view of the correlation of

subsequent iterates.

As a result, using MCMC algorithms for inference with high-dimensional models as in image

analysis, is typically much slower than using variational methods whenever the latter are tractable.

Consequently, as this book focuses on variational methods, we confine ourselves with specifying

the most basic version of the Gibbs sampler that can be conveniently utilized for numerically

inspecting probabilistical graphical models.

Example 3.2.18. Figure 3.9 shows samples drawn from the Potts prior distribution (3.65) and

L = 3 labels, using Algorithm 5. Using uniform initializations, and depending on the value of

β and the connectivity of the underlying graph G, random configurations of coherent regions

emerge at a particular spatial scale.

Example 3.2.19. A more advanced binary model p(x, θ), comprising cliques of size |C| = 9
corresponding to 3× 3 neighborhoods of the image grid graph, is illustrated by Figure 3.11.

p(x, θ) was designed as prior for lines in an image that are either horizontal, vertical, or two

such lines meeting in a corner. Figure 3.10 displays all corresponding local templates that together

with the empty template may form the foreground class. Accordingly, local factors ψC(xC) in

(3.61) were defined by specifying local energy costs JC(xC) for two classes of templates in

various ways, thus generating different model parameters θi, i = 1, 2, 3 – see Figure 3.11 for

details.

The samples shown by Figure 3.11 illustrate how prior knowledge represented by p(x, θ) is

used to puzzle together global configurations. Because only local configurations are modelled,

global configurations are entirely random unless further evidence by observed image data for a

particular configuration is taken into account.

3.3 Variational Inference

Given a graph G = (V,E) and a graphical model p(x, θ), inference refers to two basic problems:

(1) Compute the marginal distribution (3.4) for some subset A ⊂ V ,

p(xA) =

�

X\A

p(x)dx\A, (continuous case),

p(xA) =
�

x∈X\A

p(x), (discrete case).
(3.73)
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Fig. 1. Three existing forms for y(). (a) Quadratic: y(x) = ax2. (b) Line process: y(x) = a min(q2, x2). (c) T-function: y x
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In the above equation, S = {F(1), F(2), ..., F(K)} is a set of linear

filters, and L = {l(1)(), l(2)(), ..., l(K)()} is a set of potential
functions on the features extracted by S. The central prop-
erty of this class of models is that they can reproduce the

marginal distributions of F(a)
* I estimated over a set of the

training images I—while having the maximum entropy—
and the best set of features {F(1), F(2), ..., F(K)} is selected by
minimizing the entropy of p(I) [41]. The conclusion of our
earlier papers is that, for an appropriate choice of a small
set of filters S, random samples from these models can du-
plicate very general classes of textures—as far as normal
human perception is concerned. Recently, we found that
similar ideas of model inference using maximum entropy
have also been used in natural language modeling [1].

In this paper, we want to study to what extent probabil-
ity distributions of this type can be used to model generic
natural images, and we try to answer the three questions
raised above.

We start by studying the statistics of a database of 44 real
world images, and then we describe experiments in which
Gibbs distributions in the form of (2) were constructed to
duplicate the observed statistics. The learned potential
functions l(a)(), a = 1, 2, ..., K can be classified into two cate-
gories: diffusion terms which are similar to Fig. 1c, and reac-
tion terms which, in contrast to all previous models, have
inverted potentials (i.e., l(x) decreasing as a function of
|x|).

We find that the partial differential equations given by
gradient descent on U(I; L, S) are essentially reaction-
diffusion equations, which we call the Gibbs Reaction and
Diffusion Equations (Grade). In Grade, the diffusion compo-
nents produce denoising effects which are similar to the
anisotropic diffusion [25], while reaction components form
patterns and enhance preferred image features.

The learned prior models are applied to the following
applications.

First, we run the Grade starting with white noise images
and demonstrate how Grade can easily generate canonical
texture patterns, such as leopard blobs and zebra stripe, as
the Turing reaction-diffusion equations do [34], [38]. Thus

our theory provides a new method for designing PDEs for
pattern synthesis.

Second, we illustrate how the learned models can be
used for denoising, image enhancement, and clutter re-
moval by careful choice of both prior and noise models of
this type, incorporating the appropriate features extracted
at various scales and orientations. The computation simu-
lates a stochastic process—the Langevin equations—for
sampling the posterior distribution.

This paper is arranged as follows: Section 2 presents a
general theory for prior learning. Section 3 demonstrates
some experiments on the statistics of natural images and
prior learning. Section 4 studies the reaction-diffusion
equations. Section 5 demonstrates experiments on denois-
ing, image enhancement and clutter removal. Finally, Sec-
tion 6 concludes with a discussion.

2 THEORY OF PRIOR LEARNING
2.1 Goal of Prior Learning and Two Extreme Cases
We define an image I on an N ¥ N lattice L to be a function
such that for any pixel (x, y), I(x, y) Œ !, and ! is either an
interval of R or !!Ã Z. We assume that there is an underly-

ing probability distribution f(I) on the image space !N 2

 for
general natural images—arbitrary views of the world. Let
NI n Mobs

n
obs= =I , , , . . . ,1 2o t be a set of observed images

which are independent samples from f(I). The objective of
learning a generic prior model is to look for common features and
their statistics from the observed natural images. Such features
and their statistics are then incorporated into a probability distri-
bution p(I) as an estimation of f(I), so that p(I), as a prior
model, will bias vision algorithms against image features which
are not typical in natural images, such as noise distortion and
blurring. For this objective, it is reasonable to assume that
any image features have an equal chance to occur at any
location, so f(I) is translation invariant with respect to (x, y).
We will discuss the limits of this assumption in Section 6.

To study the properties of images In
obs n M, , , . . . ,= 1 2o t,

we start from exploring a set of linear filters S = {F(a), a = 1,
2, ..., K} which are characteristic of the observed images.
The statistics extracted by S are the empirical marginal dis-
tributions (or histograms) of the filter responses.
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(a) (b) (c)

Fig. 6. (a) mx,s(z), s = 0, 1, 2. (b) logmx,s(z), s = 0 (solid), s = 1 (dash-dotted), and s = 2 (dashed). (c) Histograms of a filtered uniform noise image at
scales: s = 0 (solid curve), s = 1 (dash-dotted curve), and s = 2 (dashed curve).

(a) (b) (c)
Fig. 7. The three learned potential functions for filters. (a) D. (b) —x . (c) —y . Dashed curves are the fitting functions:

(a) y 1
1.32

2.1 1 1 1 4.8x xa f a f b ge j= - +/ / . (b) y 2
1.5

1.25 1 1 1 2.8x xa f a f b ge j= - +/ / . (c) y 3
1.5

1.95 1 1 1 / 2.8x xa f a f b ge j= - +/ .

Fig. 8. A typical sample of p3(I) (256 ¥ 256 pixels).

3.2.2 Experiment II
It is clear that we need large-scale filters to do better. Rather
than using the large scale Gabor filters, we chose to use —x

and —y on four different scales and impose explicitly the
scale invariant property that we find in natural images.
Given an image I defined on an N ¥ N lattice L, we build a
pyramid in the same way as before. Let I[s], s = 0, 1, 2, 3 be
four layers of the pyramid. Let Hx,s(z, x, y) denote the histo-

gram of —xI
[s](x, y) and Hy,s(z, x, y) the histogram of —yI

[s](x, y).
We ask for a probability model p(I) which satisfies

E H z x y z z x y L sp x s sIa f c h a f c h, , , , , , , , ,= " " Œ =m 0 1 2 3

E H z x y z z x y L sp y s sIa f c h a f c h, , , , , , , , ,= " " Œ =m 0 1 2 3

where Ls is the image lattice at level s, and m za f  is the aver-

age of the observed histograms of —xI
[s] and —yI

[s] on all 44
natural images at all scales. This results in a maximum en-
tropy distribution ps(I) with energy of the following form,

U x y x ys x s x
s

y s y
s

x y Ls s

I I Ia f c he j c he j
b g

= — + —
Œ=

ÂÂ l l, ,
,

, ,
0

3

.    (12)

data

filters, featurespotentials, model parameters, 
prior knowledge

functional

potential learned 
for the Laplacian

filter output
statistics



1248 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  19,  NO.  11,  NOVEMBER  1997

Ul(I) = yl(—xI) + yl(—yI),    yl(x) = amin(q2, x2)    (20)

Ut(I) = yt(—xI) + yt(—yI),   yt(x) = ax2/(1 + cx2)   (21)

Us(I) = the four-scale energy in (12)                   (22)

yl() and yt() are the line-process and T-function displayed
in Fig. 1b and Fig. 1c, respectively.

Fig. 16 demonstrates the results: The original image is
the lobster boat displayed in Fig. 2. It is normalized to have
intensity in [0, 31] and Gaussian noise from N(0, 25) are
added. The distorted image is displayed in Fig. 16a, where
we keep the image boundary noise-free for the convenience
of boundary condition. The restored images using pl(I),
pt(I), and ps(I) are shown in Fig. 16b, Fig. 16c, and Fig. 16d,
respectively. ps(I), which is the only model with a reaction
term, appears to have the best effect in recovering the boat,
especially the top of the boat, but it also enhances the water.

Fig. 16. (a) The noise distorted image. (b)-(d) Restored images by prior
models p Il a f , p It a f , and p Is a f , respectively.

5.2 Experiment II
In many applications, i.i.d. Gaussian models for distortions
are not sufficient. For example, in Fig. 17a, the tree branches
in the foreground will make image segmentation and object
recognition extremely difficult, because they cause strong
edges across the image. Modeling such clutter is a chal-
lenging problem in many applications. In this paper, we
only consider clutter as two-dimensional pattern, despite its
geometry and 3D structure.

We collected a set of images of buildings and a set of im-
ages of trees all against clean background—the sky. For the
tree images, we translate the image intensities to [-31, 0],
i.e., zero for sky. In this case, since the trees are always

darker than the building, thus the negative intensity will
approximately take care of the occlusion effects. We learn
the Gibbs distributions for each set respectively in the
pyramid, then such models are respectively adopted as the
prior distribution and the likelihood as in (18). We recov-
ered the underlying images by maximizing a posteriori
distribution using the stochastic process.

(a)                                                       (b)
Fig. 17. (a) The observed image. (b) The restored image using six filters.

For example, Fig. 17b is computed using six filters with
two filters for I: {—x,0, —y,0}, and four filters for IC: {d, —x, —y,
Gcos(2, 30o)}, i.e., the potential for IC is:

U x y x y x y G x yx
x y

yC I I I I Ia f b gd i b ge j b gd i b gd i
b g

= — + — + + *Âf f f y, , , cos ,
,

* *

In the above equation, f*(x) and y*(x) are fit to the potential
functions learned from the set of tree images:
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So, the energy term f*(I(x, y)) forces zero intensity for the
clutter image while allowing for large negative intensities
for the dark tree branches.
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Fig. 18b is computed using eight filters with four filters
for I and four filters for IC. Thirteen filters are used for
Fig. 19 where the clutter is much heavier.

As a comparison, we run the anisotropic diffusion proc-
ess [25] on Fig. 19a, and images at iterations t = 50, 100, 300
are displayed in Fig. 20. As we can see that as t Æ •, I(t)
becomes a flat image. A robust anisotropic diffusion equa-
tion is recently reported in [2].
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(a)                                                       (b)
Fig. 18. (a) An observed image. (b) The restored image using eight
filters.

(a)                                                       (b)
Fig. 19. (a) The observed image. (b) The restored image using 13
filters.

                (a)                                 (b)                                  (c)
Fig. 20. Images by anisotropic diffusion at iteration (a) t = 50, (b) t = 100,
and (c) t = 300 for comparison.

6 CONCLUSION
In this paper, we studied the statistics of natural images,
based on which a novel theory is proposed for learning
the generic prior model—the universal statistics of real
world scenes. We argue that the same strategy developed
in this paper can be used in other applications. For exam-
ple, learning probability models for MRI images and 3D
depth maps.

The learned prior models demonstrate some important
properties such as the “inverted” potentials terms for pat-
terns formation and image enhancement. The expressive
power of the learned Gibbs distributions allow us to model
structured noise–clutter in natural scenes. Furthermore, our
prior learning method provides a novel framework for de-
signing reaction-diffusion equations based on the observed
images in a given application, without modeling the physi-
cal or chemical processes as people did before [33].

Although the synthesized images bear important fea-
tures of natural images, they are still far from realistic ones.
In other words, these generic prior models can do very little
beyond image restoration. This is mainly due to the fact
that all generic prior models are assumed to be translation
invariant, and this homogeneity assumption is unrealistic.
We call the generic prior models studied in this paper the
first-level prior. A more sophisticated prior model should
incorporate concepts like object geometry, and we call such
prior models second-level priors. Diffusion equations derived
from this second-level prior are studied in image segmen-
tation [39], and in scale space of shapes [16]. A discussion of
some typical diffusion equations is given in [22]. It is our
hope that this article will stimulate further investigations on
building more realistic prior models as well as sophisticated
PDEs for visual computation.
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Fig. 19. (a) The observed image. (b) The restored image using 13
filters.
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Fig. 20. Images by anisotropic diffusion at iteration (a) t = 50, (b) t = 100,
and (c) t = 300 for comparison.

6 CONCLUSION
In this paper, we studied the statistics of natural images,
based on which a novel theory is proposed for learning
the generic prior model—the universal statistics of real
world scenes. We argue that the same strategy developed
in this paper can be used in other applications. For exam-
ple, learning probability models for MRI images and 3D
depth maps.

The learned prior models demonstrate some important
properties such as the “inverted” potentials terms for pat-
terns formation and image enhancement. The expressive
power of the learned Gibbs distributions allow us to model
structured noise–clutter in natural scenes. Furthermore, our
prior learning method provides a novel framework for de-
signing reaction-diffusion equations based on the observed
images in a given application, without modeling the physi-
cal or chemical processes as people did before [33].

Although the synthesized images bear important fea-
tures of natural images, they are still far from realistic ones.
In other words, these generic prior models can do very little
beyond image restoration. This is mainly due to the fact
that all generic prior models are assumed to be translation
invariant, and this homogeneity assumption is unrealistic.
We call the generic prior models studied in this paper the
first-level prior. A more sophisticated prior model should
incorporate concepts like object geometry, and we call such
prior models second-level priors. Diffusion equations derived
from this second-level prior are studied in image segmen-
tation [39], and in scale space of shapes [16]. A discussion of
some typical diffusion equations is given in [22]. It is our
hope that this article will stimulate further investigations on
building more realistic prior models as well as sophisticated
PDEs for visual computation.

ACKNOWLEDGMENT
This work was started when the authors were at Harvard
University. This research was supported by a U.S. National
Science Foundation grant and a grant from ARO. We thank
Y.N. Wu and S. Geman for valuable discussion.

REFERENCES
[1] A. Berger, V. Della Pietra, and S. Della Pietra, “A Maximum En-

tropy Approach to Natural Language Processing,” Computational
Linguistics, vol. 22, no. 1, 1996.

[2] M. Black, G. Sapiro, D. Marimont, and D. Heeger, “Robust Ani-
sotropic Diffusion,” IEEE Trans. Image Processing, to appear.

[3] M.J. Black and A. Rangarajan, “On the Unification of Line Proc-
esses, Outlier Rejection, and Robust Statistics With Applications
in Early Vision,” Int’l J. Computer Vision, vol. 19, no. 1, 1996.

[4] A. Blake and A. Zisserman, Visual Reconstruction. Cambridge,
Mass.: MIT Press, 1987.

[5] J. Daugman, “Uncertainty Relation for Resolution in Space, Spa-
tial Frequency, and Orientation Optimized by Two-Dimensional
Visual Cortical Filters,” J. Optical Soc. America, vol. 2, no. 7, pp.
1,160-1,169, 1985.

[6] D.J. Field, “Relations Between the Statistics of Natural Images and
the Response Properties of Cortical Cells,” J. Optical Soc. America,
A, vol. 4, no. 12, 1987.

[7] D. Gabor, “Theory of Communication,” IEE Proc., vol. 93, no. 26,
1946.

[8] S.B. Gelfand and S.K. Mitter, “On Sampling Methods and An-
nealing Algorithms,” Markov Random Fields—Theory and Applica-
tions. New York: Academic Press, 1993.

[9] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distribu-
tions and the Bayesian Restoration of Images,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 6, no. 7, pp. 721-741, July
1984.

[10] S. Geman and C. Hwang, “Diffusion for Global Optimization,”
SIAM J. Control and Optimization, vol. 24, no. 5, 1986.

[11] D. Geman and G. Reynoids, “Constrained Restoration and the
Recover of Discontinuities,” IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, vol. 14, pp. 367-383, 1992.

[12] D. Geiger and F. Girosi, “Parallel and Deterministic Algorithms
for MRFs: Surface Reconstruction,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 13, no. 5, pp. 401-412, May 1991.

[13] D. Geiger and A.L. Yuille, “A Common Framework for Image
Segmentation,” Int’l J. Computer Vision, vol. 6, no. 3, pp. 227-243,
1991.

[14] B. Gidas, “A Renormalization Group Approach to Image Proc-
essing Problems,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 11, no. 2, Feb. 1989.

[15] P. Grindrod, The Theory and Applications of Reaction-Diffusion Equa-
tions. New York: Oxford Univ. Press, 1996.

[16] B. Kimia, A. Tannebaum, and S. Zucker, “Shapes, Shocks, and
Deformations I: The Components of Two-Dimensional Shape and

S.C. Zhu, D. Mumford: Prior Learning and Gibbs Reaction Diffusion
                          (PAMI 1997)

• generative probabilistic model
• unsupervised denoising by
  pattern formation



This Talk: Focus

• Continuous image models
• Explicit knowledge: histograms

• Tractable Inference
• Large-Scale Convex Programming

• Applications
   Variational Restoration, Co- / Segmentation
   Unsupervised Inpainting



Outline

1. Convex Variational Restoration with Histogram Priors
   (Swoboda & Schnörr, SIAM J. Imag. Sci. 2013)

2. Convex Variational Co- / Segmentation with
    Histogram Priors (Swoboda & Schnörr, EMMCVPR 2013)

3. Outlook:  Patch-Based Restoration and 
                  Unsupervised Inpainting (in preparation)



Outline

1. Convex Variational Restoration with Histogram Priors
   (Swoboda & Schnörr, SIAM J. Imag. Sci. 2013)

2. Convex Variational Co- / Segmentation with
    Histogram Priors (Swoboda & Schnörr, EMMCVPR 2013)

3. Outlook:  Patch-Based Restoration and 
                  Unsupervised Inpainting (in preparation)



Problem, Variational Approach1720 PAUL SWOBODA AND CHRISTOPH SCHNÖRR

Figure 1. A denoising experiment of a noisy image (upper row, left side) taking into account statistical
prior information through convex optimization (lower row, left side) infers the correct image structure and out-
performs hand-tuned established variational restoration (lower row, right side). Forcing global image statistics
to be similar to those of the clean image (upper row, right side) gives our approach an advantage over methods
not taking such information into account.

Note that minimizing the second term R(u) in (1.1) entails spatial regularization, whereas
the third Wasserstein term utilizes statistical information that is not spatially indexed in any
way. As an illustration, consider the academic example in Figure 1.

Knowing the grayvalue distribution of the original image helps us in regularizing the noisy
input image. We tackle the corresponding main difficulty in two different, mathematically
plausible, ways—by convex relaxations of (1.1) in order to obtain a computationally tractable
approach. Comparing these two relaxations (one may be tighter than the other one) reveals,
however, mathematical equivalence. Preliminary numerical experiments demonstrate that
the relaxation seems to be tight enough to effectively bias variational restoration toward given
statistical prior information.

2. Prior work and contribution.

2.1. Related work. Image regularization by variational methods is a powerful and com-
monly used tool for denoising, inpainting, labeling, and many other applications. As a case
study in connection with (1.1), we consider one of the most widely used approaches for de-
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Convex Variational Image Restoration with Histogram Priors∗
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Abstract. We present a novel variational approach to image restoration (e.g., denoising, inpainting, labeling)
that enables us to complement established variational approaches with a histogram-based prior,
enforcing closeness of the solution to some given empirical measure. By minimizing a single ob-
jective function, the approach utilizes simultaneously two quite different sources of information for
restoration: spatial context in terms of some smoothness prior and nonspatial statistics in terms
of the novel prior utilizing the Wasserstein distance between probability measures. We study the
combination of the functional lifting technique with two different relaxations of the histogram prior
and derive a jointly convex variational approach. Mathematical equivalence of both relaxations is
established, and cases where optimality holds are discussed. Additionally, we present an efficient
algorithmic scheme for the numerical treatment of the presented model. Experiments using the
basic total variation based denoising approach as a case study demonstrate our novel regularization
approach.
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1. Introduction. A broad range of powerful variational approaches to low-level image
analysis tasks exists, including image denoising, image inpainting, and image labeling [13, 12].
It is not straightforward, however, to incorporate directly into the restoration process statis-
tical prior knowledge about the image class at hand. Particularly, handling global statistics
as part of a single convex variational approach has not been considered so far.

In the present paper, we introduce a class of variational approaches of the form

(1.1) inf
u

F (u) + λR(u) + νW (µu, µ0),

where F (u) + λR(u) is any energy functional consisting of a data fidelity term F (u) and a
regularization term R(u), W (µu, µ0) denotes the histogram prior in terms of the Wasserstein
distance between the histogram corresponding to the minimizing function u to be determined
and some given histogram µ0, and λ > 0 and ν > 0 are parameters weighing the influence of
each term. We require R(u) to be convex. As a case study, we adopt for R(u) = TV(u) total
variation (see [2]), and F (u) =

∫
Ω f(u(x), x)dx, where f can also be a nonconvex function.

The basic Rudin–Osher–Fatemi (ROF) denoising approach of [22] is included in this approach
with f(u(x), x) = (u(x)− u0(x))

2, where u0 is the image to be denoised.
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3.1. Problem statement. For an image domain Ω ⊂ R2, e.g., Ω = [0, 1]2 and u : Ω →
[0, 1], consider the normalized pushforward L|Ω of the Lebesgue measure L restricted to Ω by
u:

(3.1) µu(A) =
1

L(Ω) (u∗L) (A) =
1

L(Ω)L(u
−1(A)) ∀A ⊂ [0, 1] measurable.

We will use the notation |B| := L(B) for simplicity. In other words, µu is the grayvalue
histogram of the image u. We would like to minimize the energy function

(3.2) min
u∈BV(Ω,[0,1])

E(u) =

∫

Ω
f(u(x), x)dx + λTV(u) + νW (µu, µ0).

TV(u) is the total variation

(3.3) TV(u) = sup

{∫

Ω
u(x) div φ(x)dx : φ ∈ C1

c (Ω,R2), ‖φ‖∞ ≤ 1

}
,

where C1
c (Ω,R2) is the space of continuously differentiable functions with compact support in

Ω and values in R2; see [2] for more details. f : [0, 1]×Ω → R is a continuous fidelity function,
and W is the Wasserstein distance

(3.4) W (µ, µ̃) = inf
π∈Π(µ,µ̃)

∫

[0,1]×[0,1]
c(γ1, γ2) dπ(γ1, γ2).

c : [0, 1]× [0, 1] → R is the cost function for the Wasserstein distance; for example, c(γ1, γ2) =
|γ1 − γ2|p with p ≥ 1. The space of transport plans is

(3.5) Π(µ, µ̃) =

{
π ∈ P([0, 1] × [0, 1]) :

π(A× [0, 1]) = µ(A)
π([0, 1] ×B) = µ̃(B)

∀A,B measurable

}
,

where P([0, 1] × [0, 1]) is the space of all probability measures defined on the Borel-σ-algebra
over [0, 1] × [0, 1]. If c is lower semicontinuous (lsc) and there exist upper semicontinuous
functions a, b ∈ L1([0, 1]) such that c(γ1, γ2) ≥ a(γ1)+b(γ2), then by Theorem 4.1 in [23] there
exists a measure which minimizes (3.4) and which is called the optimal transport plan. The
optimization problem (3.4) is linear in both constraints and objective and therefore convex.
Note, however, that energy (3.2) is not convex.

By minimizing (3.2) we obtain a solution u which remains faithful to the data by the
fidelity term f , is spatially coherent by the total variation term, and has global grayvalue
statistics similar to µ0 by the Wasserstein term.

Remark 3.1. In the case of two labels, which means restricting the function u in (3.2) to
have values u(x) ∈ {0, 1}, our model reduces to foreground/background segmentation, and the
Wasserstein term can be interpreted as a prior favoring a prespecified size of the foreground
area.
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partitioning problems, Internat. J. Comput. Vis., 104 (2013), pp. 241–269.
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3.1. Problem statement. For an image domain Ω ⊂ R2, e.g., Ω = [0, 1]2 and u : Ω →
[0, 1], consider the normalized pushforward L|Ω of the Lebesgue measure L restricted to Ω by
u:

(3.1) µu(A) =
1

L(Ω) (u∗L) (A) =
1

L(Ω)L(u
−1(A)) ∀A ⊂ [0, 1] measurable.

We will use the notation |B| := L(B) for simplicity. In other words, µu is the grayvalue
histogram of the image u. We would like to minimize the energy function

(3.2) min
u∈BV(Ω,[0,1])

E(u) =

∫

Ω
f(u(x), x)dx + λTV(u) + νW (µu, µ0).

TV(u) is the total variation

(3.3) TV(u) = sup

{∫

Ω
u(x) div φ(x)dx : φ ∈ C1

c (Ω,R2), ‖φ‖∞ ≤ 1

}
,

where C1
c (Ω,R2) is the space of continuously differentiable functions with compact support in

Ω and values in R2; see [2] for more details. f : [0, 1]×Ω → R is a continuous fidelity function,
and W is the Wasserstein distance

(3.4) W (µ, µ̃) = inf
π∈Π(µ,µ̃)

∫

[0,1]×[0,1]
c(γ1, γ2) dπ(γ1, γ2).

c : [0, 1]× [0, 1] → R is the cost function for the Wasserstein distance; for example, c(γ1, γ2) =
|γ1 − γ2|p with p ≥ 1. The space of transport plans is

(3.5) Π(µ, µ̃) =

{
π ∈ P([0, 1] × [0, 1]) :

π(A× [0, 1]) = µ(A)
π([0, 1] ×B) = µ̃(B)

∀A,B measurable

}
,

where P([0, 1] × [0, 1]) is the space of all probability measures defined on the Borel-σ-algebra
over [0, 1] × [0, 1]. If c is lower semicontinuous (lsc) and there exist upper semicontinuous
functions a, b ∈ L1([0, 1]) such that c(γ1, γ2) ≥ a(γ1)+b(γ2), then by Theorem 4.1 in [23] there
exists a measure which minimizes (3.4) and which is called the optimal transport plan. The
optimization problem (3.4) is linear in both constraints and objective and therefore convex.
Note, however, that energy (3.2) is not convex.

By minimizing (3.2) we obtain a solution u which remains faithful to the data by the
fidelity term f , is spatially coherent by the total variation term, and has global grayvalue
statistics similar to µ0 by the Wasserstein term.

Remark 3.1. In the case of two labels, which means restricting the function u in (3.2) to
have values u(x) ∈ {0, 1}, our model reduces to foreground/background segmentation, and the
Wasserstein term can be interpreted as a prior favoring a prespecified size of the foreground
area.
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3.2. The Wasserstein distance and its dual. We reformulate energy (3.2) by introducing
another way to obtain the Wasserstein distance. Assume the cost c : [0, 1] × [0, 1] → R is lsc
such that

(3.6) c(γ1, γ2) ≥ a(γ1) + b(γ2) ∀x, y ∈ [0, 1],

for a, b ∈ L1([0, 1]) upper semicontinuous.
Recall Theorem 5.10 in [23], which states that the following dual Kantorovich formulation

equals the Wasserstein distance:

(3.7) W (µu, µ0) = sup
(ψ,ψ′)∈L1([0,1])2

ψ(γ1)−ψ′(γ2)≤c(γ1,γ2)

∫ 1

0
ψdµu −

∫ 1

0
ψ′dµ0.

Define therefore

(3.8) E(u,ψ,ψ′) =

∫

Ω
f(u(x), x)dx+ λTV(u) + ν

(∫ 1

0
ψdµu −

∫ 1

0
ψ′dµ0

)
,

and let

(3.9) C = BV(Ω, [0, 1])

be the space of functions of bounded variation with domain Ω and range [0, 1] and

(3.10) D =

{
ψ,ψ′ : [0, 1] → R s.t.

ψ(γ1)− ψ′(γ2) ≤ c(γ1, γ2) ∀γ1, γ2 ∈ [0, 1],
ψ,ψ′ ∈ L1([0, 1])

}
.

It follows from (3.7) with the above definitions that

(3.11) inf
u∈C

E(u) = inf
u∈C

sup
(ψ,ψ′)∈D

E(u,ψ,ψ′).

3.3. Functional lifting. While the Wasserstein distance (3.4) is convex in both of its ar-
guments (see Theorem 4.8 in [23]), the energy in (3.2) is not convex due to the nonconvex
transformation u (→ µu in the first argument of the Wasserstein term and the possible non-
convexity of f . To overcome the nonconvexity of both the data term and the transformation
in the first argument of the Wasserstein distance, we lift the function u. Instead of u we con-
sider a function φ defined below whose domain is one dimension larger. This extra dimension
represents the range of u and allows us both to linearize the fidelity term and to convexify the
Wasserstein distance. This technique, known as functional lifting or the calibration method,
was introduced in [1] and is commonly used in many optimization problems.

Let

(3.12) C ′ =

{
φ ∈ BV(Ω×R, {0, 1}) :

φ(·, (−∞, 0]) ≡ 1, φ(·, [1,∞)) ≡ 0,
Dγφ(·, γ) ≤ 0

}
.

Every function u ∈ C corresponds uniquely to a function φ ∈ C ′ via the relation

(3.13) −Dγφ = H2!graph(u),

dual Kantorovich formulation
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such that

(3.6) c(γ1, γ2) ≥ a(γ1) + b(γ2) ∀x, y ∈ [0, 1],

for a, b ∈ L1([0, 1]) upper semicontinuous.
Recall Theorem 5.10 in [23], which states that the following dual Kantorovich formulation

equals the Wasserstein distance:

(3.7) W (µu, µ0) = sup
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∫ 1

0
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0
ψ′dµ0.
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∫
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)
,
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(3.11) inf
u∈C
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E(u,ψ,ψ′).

3.3. Functional lifting. While the Wasserstein distance (3.4) is convex in both of its ar-
guments (see Theorem 4.8 in [23]), the energy in (3.2) is not convex due to the nonconvex
transformation u (→ µu in the first argument of the Wasserstein term and the possible non-
convexity of f . To overcome the nonconvexity of both the data term and the transformation
in the first argument of the Wasserstein distance, we lift the function u. Instead of u we con-
sider a function φ defined below whose domain is one dimension larger. This extra dimension
represents the range of u and allows us both to linearize the fidelity term and to convexify the
Wasserstein distance. This technique, known as functional lifting or the calibration method,
was introduced in [1] and is commonly used in many optimization problems.
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• functional lifting

• Hoeffding-Fréchet bounds
• functional lifting
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Figure 7. Unsupervised inpainting using empirical measures as priors. Objects not conforming to the prior
statistics are removed without labeling image regions.

In the sixth experiment we have a different setup. The original image is on the left of
Figure 7. The histogram µ0 was computed from a patch of clouds, which did not include
the plane. The data term is f(x, y) = λmin(|u0(x) − y|2,α), where α > 0 is a threshold,
so the data term does not penalize great deviances from the input image too strongly. The
Wasserstein term penalizes the image of the plane whose appearance differs from the prior
statistics. The total variation regularizer is weighted weaker than in the previous examples,
because we do not want to smooth the clouds.

Note that unlike in ordinary inpainting applications, we did not specify the location of the
plane beforehand, but the algorithm figured it out on its own. The total variation term finally
favors a smooth inpainting of the area occupied by the plane. In essence we have combined
two different tasks—finding out where the plane is and inpainting that area occupied by it.
See Figure 7 for results.

9. Conclusion and outlook. We have presented in this paper a novel method for vari-
ational image regularization which takes into account global statistical information in one
model. By solving the relaxed nonconvex problem we obtain regularizd images which conform
to some global image statistics, which sets our method apart from standard variational meth-
ods. Moreover, the additional computational cost for the Wasserstein term we introduced is
negligible; however, our relaxation is not tight anymore as in models without the latter term.
In our experiments the relaxation was seen to be tight enough for good results.

Our future work will consider extensions of the present approach to multidimensional
input data and related histograms, e.g., based on color, patches, or gradient fields. The
theory developed in this paper regarding the possible exactness of solutions does not carry
over without modifications to such more complex settings. Moreover, it is equally important
to find ways related to our present work to minimize such models efficiently.
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Figure 1. The central idea of the proposed approach is to determine functions u(x) implicitly by means
of their higher-dimensional subgraph 1u, which is equal to 1 in the shaded area and 0 otherwise. To this
end, respective functionals on u are expressed as the flux of a vector field φ(x, t) through the membrane Γu

representing the graph of u, where different functionals are encoded by corresponding convex constraints on
φ(x, t). Subsequent relaxation gives rise to a convex optimization problem.

to light by Alberti, Bouchitté, and Dal Maso in [1] as an approach to characterizing the mini-
mizers of the Mumford–Shah functional [31] by an implicit (and novel) convex representation.
Their approach allows one to actually characterize (some) minimizers of the Mumford–Shah
functional by means of divergence-free vector fields in higher dimensions. A similar general
framework was introduced in [8], where it was observed that, roughly speaking, many func-
tionals of a scalar function in L1 could be minimized by finding the solution of a convex
functional in higher dimension. We summarize in this section some known results that lead
to an interesting representation which allows us to tackle numerically a class of nonconvex
problems of the form (1.2).

Let us start by considering the subgraph of the function u(x), which is the collection of all
points lying below the function value u(x). (Figure 1 shows an example for a one-dimensional
function u(x), where the subgraph is represented as the gray area.) We also introduce the
function 1u(x, t) : Ω×R → {0, 1}, which is the characteristic function of the subgraph of u(x):

(3.1) 1u(x, t) =

{
1 if u(x) > t,
0 otherwise.

Furthermore, let us denote by Γu the boundary of 1u(x, t). For the sake of simplicity, we
assume first that u is smooth: In this case, Γu is nothing but the graph {(x, u(x)) : x ∈ Ω}.
The key idea is that the energy in (1.2) can be seen as an interfacial energy of the boundary
Γu. Let νΓu denote the inner unit normal to Γu, which is given by

(3.2) νΓu =
1√

1 + |∇u(x)|2

(
∇u(x)
−1

)
.

By interfacial energy, we mean an energy of the form

(3.3)

∫

Γu

h(x, t, νΓu(x))dHd(x),
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3.2. The Wasserstein distance and its dual. We reformulate energy (3.2) by introducing
another way to obtain the Wasserstein distance. Assume the cost c : [0, 1] × [0, 1] → R is lsc
such that

(3.6) c(γ1, γ2) ≥ a(γ1) + b(γ2) ∀x, y ∈ [0, 1],

for a, b ∈ L1([0, 1]) upper semicontinuous.
Recall Theorem 5.10 in [23], which states that the following dual Kantorovich formulation

equals the Wasserstein distance:

(3.7) W (µu, µ0) = sup
(ψ,ψ′)∈L1([0,1])2

ψ(γ1)−ψ′(γ2)≤c(γ1,γ2)

∫ 1

0
ψdµu −

∫ 1

0
ψ′dµ0.

Define therefore

(3.8) E(u,ψ,ψ′) =

∫

Ω
f(u(x), x)dx+ λTV(u) + ν

(∫ 1

0
ψdµu −

∫ 1

0
ψ′dµ0

)
,

and let

(3.9) C = BV(Ω, [0, 1])

be the space of functions of bounded variation with domain Ω and range [0, 1] and

(3.10) D =

{
ψ,ψ′ : [0, 1] → R s.t.

ψ(γ1)− ψ′(γ2) ≤ c(γ1, γ2) ∀γ1, γ2 ∈ [0, 1],
ψ,ψ′ ∈ L1([0, 1])

}
.

It follows from (3.7) with the above definitions that

(3.11) inf
u∈C

E(u) = inf
u∈C

sup
(ψ,ψ′)∈D

E(u,ψ,ψ′).

3.3. Functional lifting. While the Wasserstein distance (3.4) is convex in both of its ar-
guments (see Theorem 4.8 in [23]), the energy in (3.2) is not convex due to the nonconvex
transformation u (→ µu in the first argument of the Wasserstein term and the possible non-
convexity of f . To overcome the nonconvexity of both the data term and the transformation
in the first argument of the Wasserstein distance, we lift the function u. Instead of u we con-
sider a function φ defined below whose domain is one dimension larger. This extra dimension
represents the range of u and allows us both to linearize the fidelity term and to convexify the
Wasserstein distance. This technique, known as functional lifting or the calibration method,
was introduced in [1] and is commonly used in many optimization problems.

Let

(3.12) C ′ =

{
φ ∈ BV(Ω×R, {0, 1}) :

φ(·, (−∞, 0]) ≡ 1, φ(·, [1,∞)) ≡ 0,
Dγφ(·, γ) ≤ 0

}
.

Every function u ∈ C corresponds uniquely to a function φ ∈ C ′ via the relation

(3.13) −Dγφ = H2!graph(u),
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where H2!graph(u) is the restriction of the 2-dimensional Hausdorff measure to the graph of
u. Also, for such a pair (u,φ) and for all measurable sets A ⊂ [0, 1] we have the relation

(3.14) µu(A) = µφ(A) =
1

|Ω|

∫

Ω
|Dγφ(x,A)|dx =

1

|Ω|

∫

Ω
−Dγφ(x,A)dx.

Note that in contrast to u #→ µu, the transformation φ #→ µφ is linear.
Consider the energy

(3.15) E′(φ,ψ,ψ′) =
−
∫
Ω

∫ 1
0 f(γ, x)Dγφ(x, γ) dx + λ

∫ 1
0 TV(φ(·, γ))dγ

+ ν
(∫ 1

0 ψdµφ −
∫ 1
0 ψ′dµ0

)
.

For a pair (u,φ) as in (3.13) the identity

(3.16) E(u,ψ,ψ′) = E′(φ,ψ,ψ′)

holds true by the coarea formula; see [2]. Consequently, we have

(3.17) inf
u∈C

sup
(ψ,ψ′)∈D

E(u,ψ,ψ′) = inf
φ∈C′

sup
(ψ,ψ′)∈D

E′(φ,ψ,ψ′).

Note that E′ is convex in φ and concave in (ψ,ψ′) and hence is easier to handle from an
optimization point of view.

Theorem 3.2. Let Ω ⊂ R2 be bounded, let f(x, γ) be continuous, and let the cost c of the
Wasserstein distance fulfill the conditions from section 3.2. Then there exists a minimizer φ
of infφ∈C′ sup(ψ,ψ′)∈D E′(φ,ψ,ψ′).

Proof. We first show that the set C ′ is compact in the weak∗ topology in BV. By the-
orem 3.23 in [2], C ′ is precompact. It then remains to prove that C ′ is closed in the weak∗

topology. Thus let (φn) in C ′ converge weakly∗ to φ, which means that (φn) converges strongly
in L1

loc and Dγφn converges weakly∗. Dγφn(·, γ) ≤ 0 means

(3.18)

∫

Ω×R
wDγφn ≥ 0 ∀w ∈ Cc(Ω× R).

This property is preserved under weak∗ convergence by definition. φ(x, γ) ∈ {0, 1} a.e. as con-
vergence in L1 implies pointwise convergence of some subsequence. Obviously φn(·, (−∞, 0]) ≡
1 and φn(·, [1,∞)) ≡ 0 are naturally preserved in the limit.

The first term in the energy (3.15) is lsc by assumption. The total variation term is lsc
by Theorem 5.2 in [2].

The Wasserstein term in (3.15) has the form sup{(ψ,ψ′)∈D}
∫ 1
0 ψ dµφ −

∫ 1
0 ψ′ dµ0 and can

thus be written as

(3.19) sup
{(ψ,ψ′)∈D,ψ,ψ′∈Cc([0,1])}

− 1

|Ω|

∫ 1

0

∫

Ω
ψ(γ)dxDγφ(x, γ)−

∫ 1

0
ψ′(γ) dµ0(γ),

where Cc([0, 1]) is the space of all continuous functions in [0, 1]. Hence it is a supremum of
linear functionals and lsc as well.
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3.2. The Wasserstein distance and its dual. We reformulate energy (3.2) by introducing
another way to obtain the Wasserstein distance. Assume the cost c : [0, 1] × [0, 1] → R is lsc
such that

(3.6) c(γ1, γ2) ≥ a(γ1) + b(γ2) ∀x, y ∈ [0, 1],

for a, b ∈ L1([0, 1]) upper semicontinuous.
Recall Theorem 5.10 in [23], which states that the following dual Kantorovich formulation

equals the Wasserstein distance:

(3.7) W (µu, µ0) = sup
(ψ,ψ′)∈L1([0,1])2

ψ(γ1)−ψ′(γ2)≤c(γ1,γ2)

∫ 1

0
ψdµu −

∫ 1

0
ψ′dµ0.

Define therefore

(3.8) E(u,ψ,ψ′) =

∫

Ω
f(u(x), x)dx+ λTV(u) + ν

(∫ 1

0
ψdµu −

∫ 1

0
ψ′dµ0

)
,

and let

(3.9) C = BV(Ω, [0, 1])

be the space of functions of bounded variation with domain Ω and range [0, 1] and

(3.10) D =

{
ψ,ψ′ : [0, 1] → R s.t.

ψ(γ1)− ψ′(γ2) ≤ c(γ1, γ2) ∀γ1, γ2 ∈ [0, 1],
ψ,ψ′ ∈ L1([0, 1])

}
.

It follows from (3.7) with the above definitions that

(3.11) inf
u∈C

E(u) = inf
u∈C

sup
(ψ,ψ′)∈D

E(u,ψ,ψ′).

3.3. Functional lifting. While the Wasserstein distance (3.4) is convex in both of its ar-
guments (see Theorem 4.8 in [23]), the energy in (3.2) is not convex due to the nonconvex
transformation u (→ µu in the first argument of the Wasserstein term and the possible non-
convexity of f . To overcome the nonconvexity of both the data term and the transformation
in the first argument of the Wasserstein distance, we lift the function u. Instead of u we con-
sider a function φ defined below whose domain is one dimension larger. This extra dimension
represents the range of u and allows us both to linearize the fidelity term and to convexify the
Wasserstein distance. This technique, known as functional lifting or the calibration method,
was introduced in [1] and is commonly used in many optimization problems.

Let

(3.12) C ′ =

{
φ ∈ BV(Ω×R, {0, 1}) :

φ(·, (−∞, 0]) ≡ 1, φ(·, [1,∞)) ≡ 0,
Dγφ(·, γ) ≤ 0

}
.

Every function u ∈ C corresponds uniquely to a function φ ∈ C ′ via the relation

(3.13) −Dγφ = H2!graph(u),
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where H2!graph(u) is the restriction of the 2-dimensional Hausdorff measure to the graph of
u. Also, for such a pair (u,φ) and for all measurable sets A ⊂ [0, 1] we have the relation

(3.14) µu(A) = µφ(A) =
1

|Ω|

∫

Ω
|Dγφ(x,A)|dx =

1

|Ω|

∫

Ω
−Dγφ(x,A)dx.

Note that in contrast to u #→ µu, the transformation φ #→ µφ is linear.
Consider the energy
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−
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∫ 1
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)
.

For a pair (u,φ) as in (3.13) the identity

(3.16) E(u,ψ,ψ′) = E′(φ,ψ,ψ′)

holds true by the coarea formula; see [2]. Consequently, we have

(3.17) inf
u∈C

sup
(ψ,ψ′)∈D

E(u,ψ,ψ′) = inf
φ∈C′

sup
(ψ,ψ′)∈D

E′(φ,ψ,ψ′).

Note that E′ is convex in φ and concave in (ψ,ψ′) and hence is easier to handle from an
optimization point of view.

Theorem 3.2. Let Ω ⊂ R2 be bounded, let f(x, γ) be continuous, and let the cost c of the
Wasserstein distance fulfill the conditions from section 3.2. Then there exists a minimizer φ
of infφ∈C′ sup(ψ,ψ′)∈D E′(φ,ψ,ψ′).

Proof. We first show that the set C ′ is compact in the weak∗ topology in BV. By the-
orem 3.23 in [2], C ′ is precompact. It then remains to prove that C ′ is closed in the weak∗

topology. Thus let (φn) in C ′ converge weakly∗ to φ, which means that (φn) converges strongly
in L1

loc and Dγφn converges weakly∗. Dγφn(·, γ) ≤ 0 means

(3.18)

∫

Ω×R
wDγφn ≥ 0 ∀w ∈ Cc(Ω× R).

This property is preserved under weak∗ convergence by definition. φ(x, γ) ∈ {0, 1} a.e. as con-
vergence in L1 implies pointwise convergence of some subsequence. Obviously φn(·, (−∞, 0]) ≡
1 and φn(·, [1,∞)) ≡ 0 are naturally preserved in the limit.

The first term in the energy (3.15) is lsc by assumption. The total variation term is lsc
by Theorem 5.2 in [2].

The Wasserstein term in (3.15) has the form sup{(ψ,ψ′)∈D}
∫ 1
0 ψ dµφ −

∫ 1
0 ψ′ dµ0 and can

thus be written as

(3.19) sup
{(ψ,ψ′)∈D,ψ,ψ′∈Cc([0,1])}

− 1

|Ω|

∫ 1

0

∫

Ω
ψ(γ)dxDγφ(x, γ)−

∫ 1

0
ψ′(γ) dµ0(γ),

where Cc([0, 1]) is the space of all continuous functions in [0, 1]. Hence it is a supremum of
linear functionals and lsc as well.

(coarea formula)
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(3.7) W (µu, µ0) = sup
(ψ,ψ′)∈L1([0,1])2

ψ(γ1)−ψ′(γ2)≤c(γ1,γ2)

∫ 1

0
ψdµu −

∫ 1

0
ψ′dµ0.

Define therefore

(3.8) E(u,ψ,ψ′) =

∫

Ω
f(u(x), x)dx+ λTV(u) + ν

(∫ 1

0
ψdµu −

∫ 1

0
ψ′dµ0

)
,

and let

(3.9) C = BV(Ω, [0, 1])

be the space of functions of bounded variation with domain Ω and range [0, 1] and

(3.10) D =

{
ψ,ψ′ : [0, 1] → R s.t.

ψ(γ1)− ψ′(γ2) ≤ c(γ1, γ2) ∀γ1, γ2 ∈ [0, 1],
ψ,ψ′ ∈ L1([0, 1])

}
.

It follows from (3.7) with the above definitions that

(3.11) inf
u∈C

E(u) = inf
u∈C

sup
(ψ,ψ′)∈D

E(u,ψ,ψ′).

3.3. Functional lifting. While the Wasserstein distance (3.4) is convex in both of its ar-
guments (see Theorem 4.8 in [23]), the energy in (3.2) is not convex due to the nonconvex
transformation u (→ µu in the first argument of the Wasserstein term and the possible non-
convexity of f . To overcome the nonconvexity of both the data term and the transformation
in the first argument of the Wasserstein distance, we lift the function u. Instead of u we con-
sider a function φ defined below whose domain is one dimension larger. This extra dimension
represents the range of u and allows us both to linearize the fidelity term and to convexify the
Wasserstein distance. This technique, known as functional lifting or the calibration method,
was introduced in [1] and is commonly used in many optimization problems.

Let

(3.12) C ′ =

{
φ ∈ BV(Ω×R, {0, 1}) :

φ(·, (−∞, 0]) ≡ 1, φ(·, [1,∞)) ≡ 0,
Dγφ(·, γ) ≤ 0

}
.

Every function u ∈ C corresponds uniquely to a function φ ∈ C ′ via the relation

(3.13) −Dγφ = H2!graph(u),
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where H2!graph(u) is the restriction of the 2-dimensional Hausdorff measure to the graph of
u. Also, for such a pair (u,φ) and for all measurable sets A ⊂ [0, 1] we have the relation

(3.14) µu(A) = µφ(A) =
1

|Ω|

∫

Ω
|Dγφ(x,A)|dx =

1

|Ω|

∫

Ω
−Dγφ(x,A)dx.

Note that in contrast to u #→ µu, the transformation φ #→ µφ is linear.
Consider the energy

(3.15) E′(φ,ψ,ψ′) =
−
∫
Ω

∫ 1
0 f(γ, x)Dγφ(x, γ) dx + λ

∫ 1
0 TV(φ(·, γ))dγ

+ ν
(∫ 1

0 ψdµφ −
∫ 1
0 ψ′dµ0

)
.

For a pair (u,φ) as in (3.13) the identity

(3.16) E(u,ψ,ψ′) = E′(φ,ψ,ψ′)

holds true by the coarea formula; see [2]. Consequently, we have

(3.17) inf
u∈C

sup
(ψ,ψ′)∈D

E(u,ψ,ψ′) = inf
φ∈C′

sup
(ψ,ψ′)∈D

E′(φ,ψ,ψ′).

Note that E′ is convex in φ and concave in (ψ,ψ′) and hence is easier to handle from an
optimization point of view.

Theorem 3.2. Let Ω ⊂ R2 be bounded, let f(x, γ) be continuous, and let the cost c of the
Wasserstein distance fulfill the conditions from section 3.2. Then there exists a minimizer φ
of infφ∈C′ sup(ψ,ψ′)∈D E′(φ,ψ,ψ′).

Proof. We first show that the set C ′ is compact in the weak∗ topology in BV. By the-
orem 3.23 in [2], C ′ is precompact. It then remains to prove that C ′ is closed in the weak∗

topology. Thus let (φn) in C ′ converge weakly∗ to φ, which means that (φn) converges strongly
in L1

loc and Dγφn converges weakly∗. Dγφn(·, γ) ≤ 0 means

(3.18)

∫

Ω×R
wDγφn ≥ 0 ∀w ∈ Cc(Ω× R).

This property is preserved under weak∗ convergence by definition. φ(x, γ) ∈ {0, 1} a.e. as con-
vergence in L1 implies pointwise convergence of some subsequence. Obviously φn(·, (−∞, 0]) ≡
1 and φn(·, [1,∞)) ≡ 0 are naturally preserved in the limit.

The first term in the energy (3.15) is lsc by assumption. The total variation term is lsc
by Theorem 5.2 in [2].

The Wasserstein term in (3.15) has the form sup{(ψ,ψ′)∈D}
∫ 1
0 ψ dµφ −

∫ 1
0 ψ′ dµ0 and can

thus be written as

(3.19) sup
{(ψ,ψ′)∈D,ψ,ψ′∈Cc([0,1])}

− 1

|Ω|

∫ 1

0

∫

Ω
ψ(γ)dxDγφ(x, γ)−

∫ 1

0
ψ′(γ) dµ0(γ),

where Cc([0, 1]) is the space of all continuous functions in [0, 1]. Hence it is a supremum of
linear functionals and lsc as well.
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Thm.:  existence
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3.2. The Wasserstein distance and its dual. We reformulate energy (3.2) by introducing
another way to obtain the Wasserstein distance. Assume the cost c : [0, 1] × [0, 1] → R is lsc
such that

(3.6) c(γ1, γ2) ≥ a(γ1) + b(γ2) ∀x, y ∈ [0, 1],

for a, b ∈ L1([0, 1]) upper semicontinuous.
Recall Theorem 5.10 in [23], which states that the following dual Kantorovich formulation

equals the Wasserstein distance:

(3.7) W (µu, µ0) = sup
(ψ,ψ′)∈L1([0,1])2

ψ(γ1)−ψ′(γ2)≤c(γ1,γ2)

∫ 1

0
ψdµu −

∫ 1

0
ψ′dµ0.
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ψ′dµ0

)
,

and let

(3.9) C = BV(Ω, [0, 1])

be the space of functions of bounded variation with domain Ω and range [0, 1] and

(3.10) D =

{
ψ,ψ′ : [0, 1] → R s.t.

ψ(γ1)− ψ′(γ2) ≤ c(γ1, γ2) ∀γ1, γ2 ∈ [0, 1],
ψ,ψ′ ∈ L1([0, 1])

}
.

It follows from (3.7) with the above definitions that

(3.11) inf
u∈C

E(u) = inf
u∈C

sup
(ψ,ψ′)∈D

E(u,ψ,ψ′).

3.3. Functional lifting. While the Wasserstein distance (3.4) is convex in both of its ar-
guments (see Theorem 4.8 in [23]), the energy in (3.2) is not convex due to the nonconvex
transformation u (→ µu in the first argument of the Wasserstein term and the possible non-
convexity of f . To overcome the nonconvexity of both the data term and the transformation
in the first argument of the Wasserstein distance, we lift the function u. Instead of u we con-
sider a function φ defined below whose domain is one dimension larger. This extra dimension
represents the range of u and allows us both to linearize the fidelity term and to convexify the
Wasserstein distance. This technique, known as functional lifting or the calibration method,
was introduced in [1] and is commonly used in many optimization problems.

Let

(3.12) C ′ =

{
φ ∈ BV(Ω×R, {0, 1}) :

φ(·, (−∞, 0]) ≡ 1, φ(·, [1,∞)) ≡ 0,
Dγφ(·, γ) ≤ 0

}
.

Every function u ∈ C corresponds uniquely to a function φ ∈ C ′ via the relation

(3.13) −Dγφ = H2!graph(u),
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⇒ convex relaxation

• duality (Wasserstein distance)
• functional lifting

• Hoeffding-Fréchet bounds
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where (∗) is always fulfilled for minimax problems and (∗∗) is a consequence of (4.4). This
proves (4.2). If (4.3) holds, then (∗) above is actually an equality, and the relaxation is
exact.

5. Relaxation with Hoeffding–Fréchet bounds. A second relaxation can be constructed
by using the primal formulation (3.4) of the Wasserstein distance and enforcing the marginals
of the distribution function of the transport plan to be µφ and µ0 by the Hoeffding–Fréchet
bounds.

Theorem 5.1 (see [18, Thm. 3.1.1]). Let F1, F2 be two real distribution functions (d.f.s),
and let F be a d.f. on R2. Then F has marginals F1, F2 if and only if

(5.1) (F1(γ1) + F2(γ2)− 1)+ ≤ F (γ1, γ2) ≤ min{F1(γ1), F2(γ2)}.

By (3.4) the Wasserstein distance with marginal d.f.s F1, F2 can be computed by solving
the optimal transport problem, and we arrive at the formulation

(5.2) W (dF1, dF2) = min
F

∫

R2
c(dF1, dF2) dF s.t. F respects the conditions (5.1),

where dFi shall denote the measure associated to the d.f. Fi, i = 1, 2.
Using again the functional lifting technique of [15], the Hoeffding–Fréchet bounds, and

the representation of the Wasserstein distance (5.2), we arrive at the following relaxation,
where we replace the distribution functions F1 by the distribution function of µφ, which is∫
Ω−Dγφ(x, [0, γ])dx:

(5.3)

min
φ,F

∫
Ω

∫ 1
0 −f(γ, x)Dγφ(x, γ)dx + λ

∫ 1
0 TV(φ(·, γ))dγ + ν

∫
R2 c dF,

s.t. Fφ(γ) =
1
|Ω|

∫
Ω −Dγφ(x, [0, γ])dx,

Fµ0(γ) = µ0([0, γ]),
Fφ(x1) + Fµ0(x2)− 1 ≤ F (x1, x2) ≤ min{Fφ(x1), Fµ0(x2)},
φ ∈ C ′′.

The minimization problem (5.3) is a relaxation of (3.2). Just set

φ(x, γ) =

{
1, u(x) < γ,
0, u(x) ≥ γ,

and let F be the d.f. of the optimal transport measure with marginals µu and µ0.
Remark 5.2. It is interesting to know when relaxation (5.3) is exact. By the coarea for-

mula [24] we know that

(5.4)

∫
Ω

∫ 1
0 −f(γ, x)Dγφ(x, γ)dx + λ

∫ 1
0 TV(φ(·, γ))dγ

=
∫ 1
0

∫
Ω f(uα(x), x)dxdα + λ

∫ 1
0 TV(uα)dα,

where uα corresponds to the thresholded function φα = {φ>α} ∈ C ′ via relation (3.13).
However, such a formula does not generally hold for the optimal transport: Let φα = {φ>α},
and let Fα be the d.f. of the optimal coupling with marginal d.f.s Fφα and Fµ0 . Then

(5.5) F =

∫ 1

0
Fα dα
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(C. Schnörr) IMAGE AND PATTERN ANALYSIS GROUP, UNIVERSITY OF HEIDELBERG, SPEYERER STR. 6, 69115
HEIDELBERG, GERMANY

E-mail address: schnoerr@math.uni-heidelberg.de
URL: http://ipa.iwr.uni-heidelberg.de

1

TITLE

CHRISTOPH SCHNÖRR
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where (∗) is always fulfilled for minimax problems and (∗∗) is a consequence of (4.4). This
proves (4.2). If (4.3) holds, then (∗) above is actually an equality, and the relaxation is
exact.

5. Relaxation with Hoeffding–Fréchet bounds. A second relaxation can be constructed
by using the primal formulation (3.4) of the Wasserstein distance and enforcing the marginals
of the distribution function of the transport plan to be µφ and µ0 by the Hoeffding–Fréchet
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where (∗) is always fulfilled for minimax problems and (∗∗) is a consequence of (4.4). This
proves (4.2). If (4.3) holds, then (∗) above is actually an equality, and the relaxation is
exact.

5. Relaxation with Hoeffding–Fréchet bounds. A second relaxation can be constructed
by using the primal formulation (3.4) of the Wasserstein distance and enforcing the marginals
of the distribution function of the transport plan to be µφ and µ0 by the Hoeffding–Fréchet
bounds.

Theorem 5.1 (see [18, Thm. 3.1.1]). Let F1, F2 be two real distribution functions (d.f.s),
and let F be a d.f. on R2. Then F has marginals F1, F2 if and only if

(5.1) (F1(γ1) + F2(γ2)− 1)+ ≤ F (γ1, γ2) ≤ min{F1(γ1), F2(γ2)}.

By (3.4) the Wasserstein distance with marginal d.f.s F1, F2 can be computed by solving
the optimal transport problem, and we arrive at the formulation

(5.2) W (dF1, dF2) = min
F

∫

R2
c(dF1, dF2) dF s.t. F respects the conditions (5.1),

where dFi shall denote the measure associated to the d.f. Fi, i = 1, 2.
Using again the functional lifting technique of [15], the Hoeffding–Fréchet bounds, and

the representation of the Wasserstein distance (5.2), we arrive at the following relaxation,
where we replace the distribution functions F1 by the distribution function of µφ, which is∫
Ω−Dγφ(x, [0, γ])dx:

(5.3)

min
φ,F

∫
Ω

∫ 1
0 −f(γ, x)Dγφ(x, γ)dx + λ

∫ 1
0 TV(φ(·, γ))dγ + ν

∫
R2 c dF,

s.t. Fφ(γ) =
1
|Ω|

∫
Ω −Dγφ(x, [0, γ])dx,

Fµ0(γ) = µ0([0, γ]),
Fφ(x1) + Fµ0(x2)− 1 ≤ F (x1, x2) ≤ min{Fφ(x1), Fµ0(x2)},
φ ∈ C ′′.

The minimization problem (5.3) is a relaxation of (3.2). Just set

φ(x, γ) =

{
1, u(x) < γ,
0, u(x) ≥ γ,

and let F be the d.f. of the optimal transport measure with marginals µu and µ0.
Remark 5.2. It is interesting to know when relaxation (5.3) is exact. By the coarea for-

mula [24] we know that

(5.4)

∫
Ω

∫ 1
0 −f(γ, x)Dγφ(x, γ)dx + λ

∫ 1
0 TV(φ(·, γ))dγ

=
∫ 1
0

∫
Ω f(uα(x), x)dxdα + λ

∫ 1
0 TV(uα)dα,

where uα corresponds to the thresholded function φα = {φ>α} ∈ C ′ via relation (3.13).
However, such a formula does not generally hold for the optimal transport: Let φα = {φ>α},
and let Fα be the d.f. of the optimal coupling with marginal d.f.s Fφα and Fµ0 . Then

(5.5) F =
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where H2!graph(u) is the restriction of the 2-dimensional Hausdorff measure to the graph of
u. Also, for such a pair (u,φ) and for all measurable sets A ⊂ [0, 1] we have the relation

(3.14) µu(A) = µφ(A) =
1

|Ω|

∫

Ω
|Dγφ(x,A)|dx =

1

|Ω|

∫

Ω
−Dγφ(x,A)dx.

Note that in contrast to u #→ µu, the transformation φ #→ µφ is linear.
Consider the energy

(3.15) E′(φ,ψ,ψ′) =
−
∫
Ω

∫ 1
0 f(γ, x)Dγφ(x, γ) dx + λ

∫ 1
0 TV(φ(·, γ))dγ

+ ν
(∫ 1

0 ψdµφ −
∫ 1
0 ψ′dµ0

)
.

For a pair (u,φ) as in (3.13) the identity

(3.16) E(u,ψ,ψ′) = E′(φ,ψ,ψ′)

holds true by the coarea formula; see [2]. Consequently, we have

(3.17) inf
u∈C

sup
(ψ,ψ′)∈D

E(u,ψ,ψ′) = inf
φ∈C′

sup
(ψ,ψ′)∈D

E′(φ,ψ,ψ′).

Note that E′ is convex in φ and concave in (ψ,ψ′) and hence is easier to handle from an
optimization point of view.

Theorem 3.2. Let Ω ⊂ R2 be bounded, let f(x, γ) be continuous, and let the cost c of the
Wasserstein distance fulfill the conditions from section 3.2. Then there exists a minimizer φ
of infφ∈C′ sup(ψ,ψ′)∈D E′(φ,ψ,ψ′).

Proof. We first show that the set C ′ is compact in the weak∗ topology in BV. By the-
orem 3.23 in [2], C ′ is precompact. It then remains to prove that C ′ is closed in the weak∗

topology. Thus let (φn) in C ′ converge weakly∗ to φ, which means that (φn) converges strongly
in L1

loc and Dγφn converges weakly∗. Dγφn(·, γ) ≤ 0 means

(3.18)

∫

Ω×R
wDγφn ≥ 0 ∀w ∈ Cc(Ω× R).

This property is preserved under weak∗ convergence by definition. φ(x, γ) ∈ {0, 1} a.e. as con-
vergence in L1 implies pointwise convergence of some subsequence. Obviously φn(·, (−∞, 0]) ≡
1 and φn(·, [1,∞)) ≡ 0 are naturally preserved in the limit.

The first term in the energy (3.15) is lsc by assumption. The total variation term is lsc
by Theorem 5.2 in [2].

The Wasserstein term in (3.15) has the form sup{(ψ,ψ′)∈D}
∫ 1
0 ψ dµφ −

∫ 1
0 ψ′ dµ0 and can

thus be written as

(3.19) sup
{(ψ,ψ′)∈D,ψ,ψ′∈Cc([0,1])}

− 1

|Ω|

∫ 1

0

∫

Ω
ψ(γ)dxDγφ(x, γ)−

∫ 1

0
ψ′(γ) dµ0(γ),

where Cc([0, 1]) is the space of all continuous functions in [0, 1]. Hence it is a supremum of
linear functionals and lsc as well.
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(C. Schnörr) IMAGE AND PATTERN ANALYSIS GROUP, UNIVERSITY OF HEIDELBERG, SPEYERER STR. 6, 69115
HEIDELBERG, GERMANY

E-mail address: schnoerr@math.uni-heidelberg.de
URL: http://ipa.iwr.uni-heidelberg.de

1

TITLE

CHRISTOPH SCHNÖRR
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Figure 2. Example illustrating tightness of our re-
laxation (5.3). (Left) The gray area is to be inpainted
with partly black and white, with slightly more white.
(Right) The circle in the middle has been inpainted with
slightly more white as demanded by the Wasserstein
term.

Figure 3. Example illustrating failure of tightness
of our relaxation (5.3). (Left) The gray area is the area
to be inpainted with a given Wasserstein prior favoring
the gray area to be half black and half white. (Right)
Inpainting result: we obtain a nonintegral solution vi-
sualized by gray color.

(a) Tiger denoising experiment with the original image on the left, the image denoised with the Wasserstein term
in the middle, and the standard ROF-model on the right.

(b) Detailed view of the tiger denoising experiment revealing that contrast is better preserved when the Wasser-
stein term is used.

Figure 4. Tiger denoising experiment.

biased inpainting
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Figure 2. Example illustrating tightness of our re-
laxation (5.3). (Left) The gray area is to be inpainted
with partly black and white, with slightly more white.
(Right) The circle in the middle has been inpainted with
slightly more white as demanded by the Wasserstein
term.

Figure 3. Example illustrating failure of tightness
of our relaxation (5.3). (Left) The gray area is the area
to be inpainted with a given Wasserstein prior favoring
the gray area to be half black and half white. (Right)
Inpainting result: we obtain a nonintegral solution vi-
sualized by gray color.

(a) Tiger denoising experiment with the original image on the left, the image denoised with the Wasserstein term
in the middle, and the standard ROF-model on the right.

(b) Detailed view of the tiger denoising experiment revealing that contrast is better preserved when the Wasser-
stein term is used.

Figure 4. Tiger denoising experiment.

TV onlycontrast
better preserved



Numerical Validation1734 PAUL SWOBODA AND CHRISTOPH SCHNÖRR

Figure 7. Unsupervised inpainting using empirical measures as priors. Objects not conforming to the prior
statistics are removed without labeling image regions.

In the sixth experiment we have a different setup. The original image is on the left of
Figure 7. The histogram µ0 was computed from a patch of clouds, which did not include
the plane. The data term is f(x, y) = λmin(|u0(x) − y|2,α), where α > 0 is a threshold,
so the data term does not penalize great deviances from the input image too strongly. The
Wasserstein term penalizes the image of the plane whose appearance differs from the prior
statistics. The total variation regularizer is weighted weaker than in the previous examples,
because we do not want to smooth the clouds.

Note that unlike in ordinary inpainting applications, we did not specify the location of the
plane beforehand, but the algorithm figured it out on its own. The total variation term finally
favors a smooth inpainting of the area occupied by the plane. In essence we have combined
two different tasks—finding out where the plane is and inpainting that area occupied by it.
See Figure 7 for results.

9. Conclusion and outlook. We have presented in this paper a novel method for vari-
ational image regularization which takes into account global statistical information in one
model. By solving the relaxed nonconvex problem we obtain regularizd images which conform
to some global image statistics, which sets our method apart from standard variational meth-
ods. Moreover, the additional computational cost for the Wasserstein term we introduced is
negligible; however, our relaxation is not tight anymore as in models without the latter term.
In our experiments the relaxation was seen to be tight enough for good results.

Our future work will consider extensions of the present approach to multidimensional
input data and related histograms, e.g., based on color, patches, or gradient fields. The
theory developed in this paper regarding the possible exactness of solutions does not carry
over without modifications to such more complex settings. Moreover, it is equally important
to find ways related to our present work to minimize such models efficiently.

Acknowledgments. We would like to thank the anonymous reviewers for their construc-
tive criticism and Marco Esquinazi for helpful discussions.
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Our future work will consider extensions of the present approach to multidimensional
input data and related histograms, e.g., based on color, patches, or gradient fields. The
theory developed in this paper regarding the possible exactness of solutions does not carry
over without modifications to such more complex settings. Moreover, it is equally important
to find ways related to our present work to minimize such models efficiently.
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(a) Cont. Cut (b) Ours

w
h
it
e

gr
ey

ye
ll
ow

b
la
ck

0

0.2

0.4

0.6

Cont. Cut Ours Prior

(c) Foreground histograms

Fig. 1: Inadequacy of local costs for segmentation. Figure (a) shows the

result of the Continuous Cut segmentation, Figure (b) the result of our approach

and Figure (c) the resulting and prior foreground color histograms. The blue

areas in Figures (a) and (b) denote the areas determined to be foreground by

the respective algorithms. The ground truth foreground is the penguin, while the

background is the white area behind it as well as the “EMMCVPR” inscription.

We set di(x) = − log(pi(I(x))) in the Continuous Cut model with accurate

distributions pi for the two classes. White and black color can be found in fore-

and background, hence local potentials di for both classes are not discriminative

or may lead to wrong segmentations. Although the local potentials di used in

the Continuous Cut model indicate that the “EMMCVPR” inscription should

be foreground, it is labelled correctly as background, because the regularization

strength is set high. However the white belly of the penguin is labelled wrong,

because white is more probable to be background and the regularizer is not able

to fill in the correct information. In contrast, our approach correctly determines

fore- and background, because it works on the appearance histograms of the

whole segmentation and enforces them to be close to the prespecified ones as

can be seen in Figure (c).

1. For some probability densities pi the resulting potential functions di may

not be discriminative or even misleading for some x ∈ Ω. See Figure 1 for

an illustration.

2. For individual components of the resulting partition, the corresponding ap-

pearance measures may not match well the model distributions pi.

3. In unsupervised settings like cosegmentation, which is the task of finding the

same object in two different images, we have no knowledge of the probability

distribution coming from the object we wish to cosegment. Consequently, no

probability models pi or potential functions di are available and must be

inferred as part of the optimization problem.

These problems more or less persist, even if we use more elaborate potential

functions. We resolve this issue by making our data term dependent on the whole

segmentation.
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⇒ Histogram prior globally depending on the segmentation
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Fig. 4: Unsupervised cosegmentation: foreground regions in two images are sep-
arated at arbitrary locations where the Wasserstein distance between the cor-
responding histograms is small. This distance depends on the unknown seg-
mentation, and both are consistently determined by a single convex variational
problem. No prior knowwledge at all was used in these unsupervised experiments.

6 Conclusion

We presented new variational models for segmentation and cosegmentation. Both
utilize the Wasserstein distance as a global term for enforcing closeness between
suitable appearance measures. We also derived convex relaxations of the models
and presented efficient numerical methods for minimizing them. Both models
can be easily augmented by using different regularizers or additional data terms
and any features known from the literature.
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17. H. Raguet, J. Fadili, and G. Peyré. Generalized Forward-Backward Splitting.
Technical report, Preprint Hal-00613637, 2011.

18. C. Rother, T. Minka, A. Blake, and V. Kolmogorov. Cosegmentation of image pairs
by histogram matching - incorporating a global constraint into mrfs. In CVPR,
pages 993–1000, Washington, DC, USA, 2006. IEEE.

19. S. Vicente, V. Kolmogorov, and C. Rother. Cosegmentation revisited: models and
optimization. In Proceedings of the 11th European conference on Computer vision:

Part II, ECCV’10, pages 465–479, Berlin, Heidelberg, 2010. Springer-Verlag.
20. S. Vicente, C. Rother, and V. Kolmogorov. Object cosegmentation. In CVPR,

pages 2217–2224. IEEE, 2011.
21. C. Villani. Optimal Transport: Old and New. Grundlehren der mathematischen

Wissenschaften. Springer, 1 edition, November 2008.

less general histogram mtaching, EM-like alternating schemes, 
local minima issues

Our contribution: single convex variational approaches
for both co-/segmentation with global histogram priors



Problem, Variational Approaches

6 Paul Swoboda and Christoph Schnörr

is defined as the infimum over all possible rearrangements with regard to the cost
c:

W (µ1, µ2) = inf
π∈Π(µ1,µ2)

ˆ
M×M

c dπ , (6)

It can be shown that under mild assumptions on c the infimum is attained and
the distance is finite, see [21] for an in-depth treatise of the Wasserstein distance.
The Wasserstein distance is a metric on the space of probability measures for c
a metric on M, hence it gives a reasonable distance for measures for c properly
chosen.

The minimization problem (6) has linear objective and constraints and is
therefore a linear optimization problem, which means it is globally solvable.
Moreover it is jointly convex in both of its arguments under mild conditions as
well, so it is naturally usable in a convex variational setting, see Theorem 4.8
in [21]

Finally, the Wasserstein distance offers much flexibility in modelling simi-
larity and dissimilarity of measures by choosing an appropriate cost function c
in (6).

2 Variational Model for Supervised Segmentation

We will combine into a single variational problem the spatial regularization from
the minimal partition problem (1), appearance measures from subsets of the
image domain constructed by (2) and the Wasserstein distance (6) for comparing
the resulting measures to obtain a new model for segmenting images.

We assume in this setting that one image I : Ω → M and k probability
measures µi over M are given. For a partition (Ω1, . . . ,Ωk) of Ω we enforce
the measures µI

Ωi
to be similar to the prespecified measures µi by using the

Wasserstein distance (6).
Replacing the data term with the potential functions di in the minimal par-

tition problem (1) by the Wasserstein distance yields

Eseg(Ω1, . . . ,Ωk) =
1

2

k�

i=1

Per(Ωi,Ω) +
k�

i=1

W
�
µI
Ωi
, |Ωi| · µi

�
. (7)

The additional multiplicative factor |Ωi| in the second argument of the Wasser-
stein distance above is needed to ensure that measures of equal mass are com-
pared, as otherwise the Wasserstein distance is ∞. This is due to the fact that
the space (5) of coupling measures Π is empty for measures of differing masses.

Minimizing (7) over all partitions (Ω1, . . . ,Ωk) of Ω results in partitions,
which have regular boundaries due to the perimeter term, and the appearance
measures of the partition µI

Ωi
being similar to the given appearance measures

µi. Note that the measures µI
Ωi

depend on the partition through Ωi.
As for the minimal partition problem in [5, 9, 12, 16], we replace the sets Ωi

by indicator functions ui = Ωi and minimize over them.

Segmentation
histogram priors

dependency on the segmentation

global data term
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is defined as the infimum over all possible rearrangements with regard to the cost
c:

W (µ1, µ2) = inf
π∈Π(µ1,µ2)

ˆ
M×M

c dπ , (6)

It can be shown that under mild assumptions on c the infimum is attained and
the distance is finite, see [21] for an in-depth treatise of the Wasserstein distance.
The Wasserstein distance is a metric on the space of probability measures for c
a metric on M, hence it gives a reasonable distance for measures for c properly
chosen.

The minimization problem (6) has linear objective and constraints and is
therefore a linear optimization problem, which means it is globally solvable.
Moreover it is jointly convex in both of its arguments under mild conditions as
well, so it is naturally usable in a convex variational setting, see Theorem 4.8
in [21]

Finally, the Wasserstein distance offers much flexibility in modelling simi-
larity and dissimilarity of measures by choosing an appropriate cost function c
in (6).

2 Variational Model for Supervised Segmentation

We will combine into a single variational problem the spatial regularization from
the minimal partition problem (1), appearance measures from subsets of the
image domain constructed by (2) and the Wasserstein distance (6) for comparing
the resulting measures to obtain a new model for segmenting images.

We assume in this setting that one image I : Ω → M and k probability
measures µi over M are given. For a partition (Ω1, . . . ,Ωk) of Ω we enforce
the measures µI

Ωi
to be similar to the prespecified measures µi by using the

Wasserstein distance (6).
Replacing the data term with the potential functions di in the minimal par-

tition problem (1) by the Wasserstein distance yields

Eseg(Ω1, . . . ,Ωk) =
1

2

k�

i=1

Per(Ωi,Ω) +
k�

i=1

W
�
µI
Ωi
, |Ωi| · µi

�
. (7)

The additional multiplicative factor |Ωi| in the second argument of the Wasser-
stein distance above is needed to ensure that measures of equal mass are com-
pared, as otherwise the Wasserstein distance is ∞. This is due to the fact that
the space (5) of coupling measures Π is empty for measures of differing masses.

Minimizing (7) over all partitions (Ω1, . . . ,Ωk) of Ω results in partitions,
which have regular boundaries due to the perimeter term, and the appearance
measures of the partition µI

Ωi
being similar to the given appearance measures

µi. Note that the measures µI
Ωi

depend on the partition through Ωi.
As for the minimal partition problem in [5, 9, 12, 16], we replace the sets Ωi

by indicator functions ui = Ωi and minimize over them.

Segmentation
histogram priors

dependency on the segmentation
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Remark 2. (8) is the Continuous Cut model when we choose k = 2, two points
v1, v2 ∈ M and µ1 = δv1 and µ2 = δv2 , as then we can replace the Wasserstein
distance by multiplication with a local data term. The resulting model is the
minimal partition problem (1) for two classes. [9] shows that a global minimizer
of the non-relaxed problem can be obtained by thresholding.

3 Variational Model for Unsupervised Cosegmentation

Let two images I1, I2 : Ω → M be given and let M and c be as above. Suppose
an object is present in both images, but we have no information about the ap-
pearance, location or size of it, Thus, we consider the fully unsupervised setting.
The task is to search for two sets Ω1,Ω2 ⊂ Ω such that Ω1 and Ω2 are the
areas occupied in I1 resp. I2 by the common object. Let µI1

Ω1
and µI2

Ω2
be the

appearance measures of the common object in images I1 and I2 respectively. We
know that both appearance measures should be very similar. Therefore we will

use the Wasserstein distance W
�
µI1
Ω1

, µI2
Ω2

�
as a penalization term for enforcing

similarity of the appearance measures µI1
Ω1

and µI2
Ω2

.
Consider the energy

Ecoseg(Ω1,Ω2) =
2�

i=1

Per(Ωi,Ω) +W
�
µI1
Ω1

, µI2
Ω2

�
+

2�

i=1

P · |Ω\Ωi| (14)

where P > 0 and P · |Ω\Ωi| penalizes not selecting an area as the common
object. This latter term is called the ballooning term in [19] and is needed to
avoid the empty cosegmentation. Minimizing (14) results in two sets Ω1 and
Ω2 which have a short boundary due to the perimeter term and such that the
appearance measures µI1

Ω1
and µI2

Ω2
are similar. Note that neither µI1

Ω1
nor µI2

Ω2

are known but completely depend on the segmentation.
The main difference between the segmentation model (7) and the cosegmen-

tation model (14) is that in the segmentation model the second argument in the
Wasserstein distance is fixed while we allow it to vary in the cosegmentation
model.

By the same arguments as in Section 2 and Proposition 1, we can establish
a similar correspondence between (14) and a suitable convex formulation in the
space of indicator functions.

Proposition 2. Let ui = Ωi . Then (14) is equal to

Jcoseg(u
1, u2) =

�2
i=1

´
Ω |Dui| dx+W

�´
Ω u1(x)δI1(x)dx,

´
Ω u2(x)δI2(x)dx

�

+
�2

i=1 P ·
´
Ω(1− ui(x)) dx

.

(15)
Minimizing Ecoseg(Ω1,Ω2) (14) over all sets Ω1,Ω2 ⊂ Ω with finite perimeter is
equivalent to minimizing Jcoseg(u1, u2) over all {0, 1}-valued functions of finite
variation.

compare 
foreground statistics

dependency on the segmentation

enforce decision
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1, u2) =

�2
i=1

´
Ω |Dui| dx+W

�´
Ω u1(x)δI1(x)dx,

´
Ω u2(x)δI2(x)dx

�

+
�2

i=1 P ·
´
Ω(1− ui(x)) dx

.

(15)
Minimizing Ecoseg(Ω1,Ω2) (14) over all sets Ω1,Ω2 ⊂ Ω with finite perimeter is
equivalent to minimizing Jcoseg(u1, u2) over all {0, 1}-valued functions of finite
variation.

Segmentation

• representation via indicator functions
• convex relaxation
• problem decomposition, efficient prox-map (W-distance) 
• numerical validation

Contribution
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Fig. 3: Supervised segmentation experiments with global segmentation-

dependent data term using the Wasserstein distance. Note that because the

results correspond to global optima of a single convex functional, undesired parts

of the partition are solely due to the – in our case: simple color – features and

the corresponding prior appearance measures.

5.2 Cosegmentation

For cosegmentation we first subdivide the image into superpixels with SLIC [1].

Then we modify the cost function c as follows: For each superpixel in image 1

we consider k nearest superpixels in image 2 and vice versa. For these pairs we

let c be the euclidean distance. For all other pairs of superpixels we set c to ∞.

Obviously, the optimal transport plan will be zero where the distance c is ∞,

hence we may disregard such variables. By this procedure we reduce the problem

size and computational complexity substantially while not reducing the quality

of the solution. The prox-step proxWcoseg
(u1, u2) can be further reduced with a

technique similar to the one presented in Section 4.1.

Four experiments can be seen in figure 4. The foreground objects were taken

from the dataset [4]. We rotated these objects, translated them and added dif-

ferent backgrounds. As the Wasserstein term does not depend upon location and

spatial arrangement of the pixels contributing to the cosegmentation, we could

find the common objects independently of where and in which orientation they

were located in the images without explicitly enumerating over all different pos-
sible such configurations, but by solving a single convex optimization problem to
its global optimum. Note that in this unsupervised setting, no prior knowledge

about the objects is used.

In both experimental settings our method produced functions ui which were

nearly indicator functions except on some parts of the boundaries. Empirically,

our relaxation seems to be quite tight.

Numerical Validation

Prior: extrapolating simple color histograms

Note: this is a global optimum (inference).
Undesired partitions are due to features.
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Fig. 4: Unsupervised cosegmentation: foreground regions in two images are sep-
arated at arbitrary locations where the Wasserstein distance between the cor-
responding histograms is small. This distance depends on the unknown seg-
mentation, and both are consistently determined by a single convex variational
problem. No prior knowwledge at all was used in these unsupervised experiments.

6 Conclusion

We presented new variational models for segmentation and cosegmentation. Both
utilize the Wasserstein distance as a global term for enforcing closeness between
suitable appearance measures. We also derived convex relaxations of the models
and presented efficient numerical methods for minimizing them. Both models
can be easily augmented by using different regularizers or additional data terms
and any features known from the literature.
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Outline

1. Convex Variational Restoration with Histogram Priors
   (SIAM J. Imag. Sci. 2013)

2. Convex Variational Co- / Segmentation with
    Histogram Priors

3. Outlook:  Patch-Based Restoration and 
                  Unsupervised Inpainting
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