Variational Image Analysis Using Wasserstein-Distance Based Priors

Christoph Schnörr, Paul Swoboda

Image and Pattern Analysis Group Heidelberg University

> FGMIA Jan 13-15, Paris

S.C. Zhu, D. Mumford: Prior Learning and Gibbs Reaction Diffusion

generative probabilistic model
unsupervised denoising by pattern formation

S.C. Zhu, D. Mumford: Prior Learning and Gibbs Reaction Diffusion (PAMI 1997)

Model Classes

Gibbs distributions

Sampling a biharmonic Gaussian prior

Sampling a Potts prior

Sampling a more involved discrete prior

Interaction of patches - implicit knowledge representation

S.C. Zhu, D. Mumford: Prior Learning and Gibbs Reaction Diffusion (PAMI 1997)

S.C. Zhu, D. Mumford: Prior Learning and Gibbs Reaction Diffusion

generative probabilistic model
unsupervised denoising by pattern formation

This Talk: Focus

- Continuous image models
- Explicit knowledge: histograms
- Tractable Inference
- Large-Scale Convex Programming
- Applications
 Variational Restoration, Co- / Segmentation
 Unsupervised Inpainting

Outline

- I. Convex Variational Restoration with Histogram Priors (Swoboda & Schnörr, SIAM J. Imag. Sci. 2013)
- 2. Convex Variational Co- / Segmentation with Histogram Priors (Swoboda & Schnörr, EMMCVPR 2013)
- 3. Outlook: Patch-Based Restoration and Unsupervised Inpainting (in preparation)

Outline

I. Convex Variational Restoration with Histogram Priors (Swoboda & Schnörr, SIAM J. Imag. Sci. 2013)

- 2. Convex Variational Co- / Segmentation with Histogram Priors (Swoboda & Schnörr, EMMCVPR 2013)
- 3. Outlook: Patch-Based Restoration and Unsupervised Inpainting (in preparation)

TV + Wasserstein

TV only

$$\inf_{u} F(u) + \lambda R(u) + \nu W(\mu^{u}, \mu^{0})$$

data termconvex spatialhistogram(arbitrary)regularizationprior

$$\inf_{u} F(u) + \lambda R(u) + \nu W(\mu^{u}, \mu^{0})$$

data termconvex spatialnon-spatial(arbitrary)regularizationhistogram

$$\min_{u \in \mathrm{BV}(\Omega,[0,1])} E(u) = \int_{\Omega} \underbrace{f(u(x), x) dx}_{\text{domain of } u} + \lambda \mathrm{TV}(u) + \nu W(\mu^u, \mu^0)$$

$$W(\mu, \tilde{\mu}) = \inf_{\pi \in \Pi(\mu, \tilde{\mu})} \int_{[0,1] \times [0,1]} c(\gamma_1, \gamma_2) \ d\pi(\gamma_1, \gamma_2)$$

$$\bigvee_{\text{range of } u} c(\gamma_1, \gamma_2) \ d\pi(\gamma_1, \gamma_2)$$

Contribution

- variational approach
- two convex relaxations, proof of equivalence
- convex programming approach
- numerical validation

Related Work

J. RABIN AND G. PEYRÉ, Wasserstein regularization of imaging problem, in Proceedings of ICIP, IEEE, Washington, DC, 2011, pp. 1541–1544.

contrast and color modification *non-convex* approximation of the original energy

Convex Relaxation

based on

- duality (Wasserstein distance)
- functional lifting

alternatively

- Hoeffding-Fréchet bounds
- functional lifting

Convex Relaxation

based on

- duality (Wasserstein distance)
- functional lifting

alternatively

- Hoeffding-Fréchet bounds
- functional lifting

Wasserstein distance

$$W(\mu, \tilde{\mu}) = \inf_{\pi \in \Pi(\mu, \tilde{\mu})} \int_{[0,1] \times [0,1]} c(\gamma_1, \gamma_2) \ d\pi(\gamma_1, \gamma_2)$$

dual Kantorovich formulation

$$W(\mu^{u}, \mu^{0}) = \sup_{\substack{(\psi, \psi') \in L_{1}([0,1])^{2} \\ \psi(\gamma_{1}) - \psi'(\gamma_{2}) \leq c(\gamma_{1}, \gamma_{2})}} \int_{0}^{1} \psi d\mu^{u} - \int_{0}^{1} \psi' d\mu^{0}$$

Wasserstein distance

$$W(\mu, \tilde{\mu}) = \inf_{\pi \in \Pi(\mu, \tilde{\mu})} \int_{[0,1] \times [0,1]} c(\gamma_1, \gamma_2) \ d\pi(\gamma_1, \gamma_2)$$

dual Kantorovich formulation

$$W(\mu^{u},\mu^{0}) = \sup_{\substack{(\psi,\psi')\in L_{1}([0,1])^{2}\\\psi(\gamma_{1})-\psi'(\gamma_{2})\leq c(\gamma_{1},\gamma_{2})}} \int_{0}^{1} \psi d\mu^{u} - \int_{0}^{1} \psi' d\mu^{0}$$

reformulation

$$E(u,\psi,\psi') = \int_{\Omega} f(u(x),x)dx + \lambda \mathrm{TV}(u) + \nu \left(\int_{0}^{1} \psi d\mu^{u} - \int_{0}^{1} \psi' d\mu^{0}\right)$$
$$\inf_{u \in C} E(u) = \inf_{u \in C} \sup_{(\psi,\psi') \in D} E(u,\psi,\psi')$$

Reformulation

non-convexity

$$E(u,\psi,\psi') = \int_{\Omega} \int f(u(x),x)dx + \lambda \mathrm{TV}(u) + \nu \left(\int_{0}^{1} \psi d\mu^{u} - \int_{0}^{1} \psi' d\mu^{0}\right)$$
$$\inf_{u \in C} E(u) = \inf_{u \in C} \sup_{(\psi,\psi') \in D} E(u,\psi,\psi')$$

\Rightarrow convex relaxation

- duality (Wasserstein distance)
- functional lifting
- Hoeffding-Fréchet bounds
- functional lifting

Functional lifting

- G. ALBERTI, G. BOUCHITTE, AND G. DAL MASO, The calibration method for the Mumford-Shah functional and free-discontinuity problems, Calc. Var. Partial Differential Equations, 16 (2003), pp. 299–
- T. POCK, D. CREMERS, H. BISCHOF, AND A. CHAMBOLLE, Global solutions of variational models with convex regularization, SIAM J. Imaging Sci., 3 (2010), pp. 1122–1145.

$$C' = \left\{ \phi \in \mathrm{BV}\left(\Omega \times \mathbb{R}, \{0, 1\}\right) : \begin{array}{c} \phi(\cdot, (-\infty, 0]) \equiv 1, \ \phi(\cdot, [1, \infty)) \equiv 0, \\ D_{\gamma}\phi(\cdot, \gamma) \leq 0 \end{array} \right\}$$

 $-D_{\gamma}\phi = \mathcal{H}^2 \llcorner \operatorname{graph}(u)$

Functional lifting

$$\mu^{u}(A) = \mu^{\phi}(A) = \frac{1}{|\Omega|} \int_{\Omega} |D_{\gamma}\phi(x,A)| dx = \frac{1}{|\Omega|} \int_{\Omega} -D_{\gamma}\phi(x,A) dx$$
$$\phi \mapsto \mu^{\phi} \text{ is linear}$$

Functional lifting

$$\mu^{u}(A) = \mu^{\phi}(A) = \frac{1}{|\Omega|} \int_{\Omega} |D_{\gamma}\phi(x,A)| dx = \frac{1}{|\Omega|} \int_{\Omega} -D_{\gamma}\phi(x,A) dx$$
$$\phi \mapsto \mu^{\phi} \text{ is linear}$$

$$\begin{split} E(u,\psi,\psi') &= \int_{\Omega} f(u(x),x) dx + \lambda \mathrm{TV}(u) + \nu \left(\int_{0}^{1} \psi d\mu^{u} - \int_{0}^{1} \psi' d\mu^{0} \right) \\ E'(\phi,\psi,\psi') &= \begin{array}{c} -\int_{\Omega} \int_{0}^{1} f(\gamma,x) D_{\gamma} \phi(x,\gamma) dx + \lambda \int_{0}^{1} \mathrm{TV}(\phi(\cdot,\gamma)) d\gamma \\ + \nu \left(\int_{0}^{1} \psi d\mu^{\phi} - \int_{0}^{1} \psi' d\mu^{0} \right). \end{split}$$
(coarea formula)

Functional lifting & Convex Relaxation

$$\mu^{u}(A) = \mu^{\phi}(A) = \frac{1}{|\Omega|} \int_{\Omega} |D_{\gamma}\phi(x,A)| dx = \frac{1}{|\Omega|} \int_{\Omega} -D_{\gamma}\phi(x,A) dx$$
$$\phi \mapsto \mu^{\phi} \text{ is linear}$$

$$\inf_{u \in C} \sup_{(\psi, \psi') \in D} E(u, \psi, \psi') = \inf_{\phi \in C'} \sup_{(\psi, \psi') \in D} E'(\phi, \psi, \psi')$$
relax

Reformulation

non-convexity

$$E(u,\psi,\psi') = \int_{\Omega} \int f(u(x),x)dx + \lambda \mathrm{TV}(u) + \nu \left(\int_{0}^{1} \psi d\mu^{u} - \int_{0}^{1} \psi' d\mu^{0}\right)$$
$$\inf_{u \in C} E(u) = \inf_{u \in C} \sup_{(\psi,\psi') \in D} E(u,\psi,\psi')$$

 \Rightarrow convex relaxation

- duality (Wasserstein distance)
- functional lifting
- Hoeffding-Fréchet bounds
- functional lifting

Hoeffding-Fréchet Bounds

 $(F_1(\gamma_1) + F_2(\gamma_2) - 1)_+ \le F(\gamma_1, \gamma_2) \le \min\{F_1(\gamma_1), F_2(\gamma_2)\}\$

Hoeffding-Fréchet Bounds

 $(F_1(\gamma_1) + F_2(\gamma_2) - 1)_+ \le F(\gamma_1, \gamma_2) \le \min\{F_1(\gamma_1), F_2(\gamma_2)\}\$

Hoeffding-Fréchet Bounds

 $(F_1(\gamma_1) + F_2(\gamma_2) - 1)_+ \le F(\gamma_1, \gamma_2) \le \min\{F_1(\gamma_1), F_2(\gamma_2)\}\$

Functional Lifting & Convex Relaxation

$$\min_{\substack{\phi,F\\ \text{s.t.}}} \quad \int_{\Omega} \int_{0}^{1} -f(\gamma, x) D_{\gamma} \phi(x, \gamma) dx + \lambda \int_{0}^{1} \operatorname{TV}(\phi(\cdot, \gamma)) d\gamma + \nu \int_{\mathbb{R}^{2}} c \ dF,$$

$$\text{s.t.} \quad F_{\phi}(\gamma) = \frac{1}{|\Omega|} \int_{\Omega} -D_{\gamma} \phi(x, [0, \gamma]) dx,$$

$$F_{\mu^{0}}(\gamma) = \mu^{0}([0, \gamma]),$$

$$F_{\phi}(x_{1}) + F_{\mu^{0}}(x_{2}) - 1 \leq F(x_{1}, x_{2}) \leq \min\{F_{\phi}(x_{1}), F_{\mu^{0}}(x_{2})\},$$

$$\phi \in C''.$$

Convex Relaxations

- duality (Wasserstein distance)
- functional lifting

$$\mathbf{v} = \mathbf{v} \mathbf{v}$$
 (proof: paper)

- Hoeffding-Fréchet bounds
- functional lifting

Convex Programming

Discretized problem

 $\min_{\phi \in C_d''} \max_{(\psi, \psi') \in D_d} E_d'(\phi, \psi, \psi')$

based on

$$E'(\phi,\psi,\psi') = -\int_{\Omega} \int_0^1 f(\gamma,x) D_{\gamma} \phi(x,\gamma) \, dx + \lambda \int_0^1 \mathrm{TV}(\phi(\cdot,\gamma)) d\gamma + \nu \left(\int_0^1 \psi d\mu^{\phi} - \int_0^1 \psi' d\mu^0 \right).$$

 \rightarrow generalized FB-splitting wrt. (...)

H. RAGUET, J. FADILI, AND G. PEYRÉ, A generalized forward-backward splitting, SIAM J. Imaging Sci., 6 (2013), pp. 1199–1226.

 \Rightarrow single *non*-standard proximal mapping only wrt. (...)

Convex Programming

Proximal mapping with $c(\gamma_1, \gamma_2) = |\gamma_1 - \gamma_2|$

$$\overline{\phi} = \underset{\phi}{\operatorname{argmin}} \frac{1}{2} \|\phi - \widetilde{\phi}\|^2 + \lambda W(\mu^{\phi}, \mu^0)$$

$$\overline{\phi}(x,\gamma) = \widetilde{\phi}(x,\gamma) + c_{\gamma}$$

$$\begin{split} \mathbf{c}_{\boldsymbol{\gamma}} &= \operatorname{shrink} \Big(-\frac{1}{|\Omega|} \int_{\Omega} \tilde{\phi}(x,\gamma) dx - F_{\mu^{0}}(\gamma) + 1, \frac{\lambda}{|\Omega|} \Big) \\ &+ \frac{1}{|\Omega|} \int_{\Omega} \tilde{\phi}(x,\gamma) dx + F_{\mu^{0}}(\gamma) - 1 \end{split}$$

biased inpainting

example: non-tight relaxation

Histogram constrained denoising

contrast better preserved

TV only

Unsupervised inpainting

TV only

Outline

- I. Convex Variational Restoration with Histogram Priors (Swoboda & Schnörr, SIAM J. Imag. Sci. 2013)
- 2. Convex Variational Co- / Segmentation with Histogram Priors (Swoboda & Schnörr, EMMCVPR 2013)
- 3. Outlook: Patch-Based Restoration and Unsupervised Inpainting (in preparation)

Problem, Variational Approaches

Local potentials $d^{i}(x) = -\log(p^{i}(I(x)))$ + spatial regularization may not suffice

 \Rightarrow Histogram prior globally depending on the segmentation

Co-segmenting similar objects in *different* scenes without prior knowledge (appearance)

 \Rightarrow Wasserstein distance between foreground histograms that globally depend on and are inferred with the segmentation

Related Prior Work

includes

T. F. Chan, S. Esedoglu, and K. Ni. Histogram Based Segmentation Using Wasserstein Distances. In Fiorella Sgallari, Almerico Murli, and Nikos Paragios, editors, *SSVM*, volume 4485 of *Lecture Notes in Computer Science*, pages 697–708. Springer, 2007.

potentials based on *local* Wasserstein-distances

C. Rother, T. Minka, A. Blake, and V. Kolmogorov. Cosegmentation of image pairs by histogram matching - incorporating a global constraint into mrfs. In *CVPR*, pages 993–1000, Washington, DC, USA, 2006. IEEE.

S. Vicente, V. Kolmogorov, and C. Rother. Cosegmentation revisited: models and optimization. In *Proceedings of the 11th European conference on Computer vision: Part II*, ECCV'10, pages 465–479, Berlin, Heidelberg, 2010. Springer-Verlag.

less general histogram mtaching, EM-like alternating schemes, local minima issues

Our contribution: single convex variational approaches for both co-/segmentation with global histogram priors

dependency on the segmentation

Segmentation

$$E_{seg}(\Omega_1, \dots, \Omega_k) = \frac{1}{2} \sum_{i=1}^k \operatorname{Per}(\Omega_i, \Omega) + \sum_{i=1}^k W\left(\mu_{\Omega_i}^I, |\Omega_i| \cdot \mu^i\right)$$

Co-segmentation

$$E_{coseg}(\Omega_1, \Omega_2) = \sum_{i=1}^2 \operatorname{Per}(\Omega_i, \Omega) + W\left(\mu_{\Omega_1}^{I_1}, \mu_{\Omega_2}^{I_2}\right) + \sum_{i=1}^2 P \cdot |\Omega \setminus \Omega_i|$$

Contribution

- representation via indicator functions
- convex relaxation
- problem decomposition, efficient prox-map (W-distance)
- numerical validation

Prior: extrapolating simple color histograms

Note: this is a *global* optimum (inference). Undesired partitions are due to features.

Outline

I. Convex Variational Restoration with Histogram Priors (SIAM J. Imag. Sci. 2013)

2. Convex Variational Co- / Segmentation with Histogram Priors

3. Outlook: Patch-Based Restoration and Unsupervised Inpainting

Variational Image Analysis Using Wasserstein-Distance Based Priors

Christoph Schnörr, Paul Swoboda

Image and Pattern Analysis Group Heidelberg University

> FGMIA Jan 13-15, Paris