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sounds (e.g., speech / music)	

radar or seismic signals	

spikes in neurons

Ubiquitous signal property: Superposition of 
prototype features, at arbitrary (continuous) 
times/positions/orientations/sizes etc ...

images (e.g., texture)	




localized waveform, assume known (for now)

independent arrival times

i.i.d., distributed according to

AWGN, variance 

Goal: recover      ‘s  and      ‘s

Continuous sparse inverse problem:

 (for now)



• Matched filter	

  (isolated occurrences, known waveform)

• Wiener-Kolmogorov filter 	

  (dense occurrences, known waveform)

Classical solutions (from the 1940’s) for 
related problems...
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Modern sparse inverse solution

• Enforce sparsity with a convex objective function for 
coefficients    :

LASSO [Tibshirani, 1996]    Basis Pursuit [Chen, Donoho, Sanders, 1998]

• Re-formulate as a  discrete linear inverse problem 
with dictionary of     -shifted functions: 



•     should be small	


-  approximation of     at non-integer 	


- Mapping of          to               ?	


• But      can’t be too small	


- Basis redundancy => convex approximation fails to 
produce sparsity [Candes, Romberg, Tau, 2006]	


- High computational cost

Drawbacks of BP

f
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2D illustration of objective 
function and solutions
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BP CBP-T CBP-P

upward: BP solution	

downward: true waveform locations/amplitudes

Signal simulation

2D illustration of objective 
function and solutions
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Continuous basis pursuit - Taylor

Construct interpolative dictionary:
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Continuous basis pursuit - Taylor

Construct interpolative dictionary:

Optimize (convex) objective:

Choose spacing such that:
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BP CBP - Taylor1
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BP CBP - Taylor1

BP CBP-T CBP-PBP CBP-T CBP-P

upward: estimated locations/amplitudes, with optimized 	

downward: true waveform locations/amplitudes

    gray - reconstruction error	

    blue - L0 solution 	

yellow - LS solution (            )	
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Interpolator convergence rates
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Continuous basis pursuit - polar
Choose                such that



Continuous basis pursuit - polar
Choose                such that

Construct interpolative dictionary:



Continuous basis pursuit - polar
Choose                such that

Construct interpolative dictionary:

f
0

Solve:

convex	

hull
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CBP - polar
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CBP - polar

CBP - Taylor1

BP

CBP - Taylor1

    gray - reconstruction error	
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BP CBP-T CBP-PBP CBP-T CBP-P

BP CBP-T CBP-P

upward: estimated locations/amplitudes, with optimized 	

downward: true waveform locations/amplitudes
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Widely-used solution:
1. Threshold to find segments containing  spikes	

2. Reduce dimensionality of segments using PCA	

3. Identify spikes using clustering (e.g., K-means)

Guaranteed failure for overlapping spikes!

Application to neural “spike sorting”
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[Pillow et. al. 2013]



A

synchronous spiking superposition for various time shifts

C

P
C

 2
 p

ro
je

ct
io

n

B

+ =

PC 1 projection

P
C

 2
 p

ro
je

ct
io

n

+ =

D

PC 1 projection

0 ms

+0.1 ms

-0.15 ms+0.45 ms

Failures of clustering for near-synchronous spikes

[Pillow et. al. 2013]



Initialize     (random, or use K-means cluster centers)

[Ekanadham et al, 2013]
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Use CBP to solve for                    : 

Initialize     (random, or use K-means cluster centers)

f
0 Convert                      back to 

 Solve for     (least squares):

[Ekanadham et al, 2013]

Binarize to obtain final spike estimates
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Figure 5: Spike sorting performance comparison. (a) Each panel shows the total sorting
errors (as a function of noise level) for each of the 4 simulated data sets [9] incurred by
standard clustering (black, Section 1.1), superparamagnetic clustering [9] (brown), BEER
(red, Section 1.4), and our method (cyan, Section 1.2). For all four examples, a fixed
threshold of 0.5 was used to identify spikes in our method. (b,c) Tradeoff between “false
positive and “miss errors on each of the tetrode data sets [13, 3], respectively, as the as-
signment probability threshold is varied for the BEER (blue/green/red curves) and as the
spike coefficient threshold is varied for our method (cyan curve, magenta curve with wave-
form learning). In (b), waveform learning did not significantly improve performance with
CBP, and so the corresponding curve is not shown. Large points indicate automatically
chosen thresholds (see Section 1.2). The black X indicates the performance of standard
clustering (Section 1.1). Diagonal gray lines indicate contours of constant total error.

16

Simulated data (4 data sets)  [Quiroga et. al. 2004]

SPC = super-paramagnetic clustering  [Quiroga et. al. 2004]

BEER = “best ellipsoid error rate” - elliptical clustering, trained on 
ground truth data  [Harris et. al. 2000]



Thomas RECORDING GmbH – Giessen – GERMANY 
Email: info@ThomasRecording.com         Web: www.ThomasRecording.com 

 

 
Figure 3: a) Scanning electron photo of the tetrode tip, b) cross section of the tetrode 

 Tetrode electrode assembly	

Thomson Recording GmbH, Giessen Germany

Thomas RECORDING GmbH – Giessen – GERMANY 
Email: info@ThomasRecording.com         Web: www.ThomasRecording.com 

6. Tetrode data analysis 
 
In figure 5 one can see an example of tetrode data clusters. One can see that in this 
example 4 cells could be separated from a multi unit recording made with TREC 
tetrodes loaded to a 64 channel Eckhorn system.  
 

 

Figure 5: 3 dimensional presentation of PCA based clusters. (Raw data were recorded with TREC 
Tetrodes by Dr. Matthias Munk, MPI Frankfurt, GERMANY) 
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Conclusions
• CBP: Sparse signal decomposition with continuously 

shifted feature waveforms	


- Translation manifold approximated with circular arcs	


- Can significantly outperform standard BP/LASSO	


- State-of-the-art results in neural spike identification	


• Extensions:  	


- Priors on coefficient amplitudes	


- Proximal methods / ADMM 	


- Other transformations (dilation, rotation, modulation)


