# Continuous Basis Pursuit

#### Eero Simoncelli

Howard Hughes Medical Institute, Center for Neural Science, and Courant Institute of Mathematical Sciences

New York University

# Continuous Basis Pursuit

#### Eero Simoncelli

Howard Hughes Medical Institute, Center for Neural Science, and Courant Institute of Mathematical Sciences

New York University



Chaitu Ekanadham

Ubiquitous signal property: Superposition of prototype features, at arbitrary (**continuous**) times/positions/orientations/sizes etc ...

Ubiquitous signal property: Superposition of prototype features, at arbitrary (**continuous**) times/positions/orientations/sizes etc ...

#### images (e.g., texture)

Ubiquitous signal property: Superposition of prototype features, at arbitrary (**continuous**) times/positions/orientations/sizes etc ...



# Continuous sparse inverse problem:

$$y(t) = \sum_{j} a_{j} f(t - \tau_{j}) + \eta(t)$$

- f localized waveform, assume known (for now)
- $\tau_j$  independent arrival times
- $a_j$  i.i.d., distributed according to p(a)
- $\eta(t)$  AWGN, variance  $\sigma^2$  (for now)

Goal: recover  $a_j$ 's and  $\tau_j$ 's

Classical solutions (from the 1940's) for related problems...

• Matched filter (isolated occurrences, known waveform)

• Wiener-Kolmogorov filter (dense occurrences, known waveform)

# Modern sparse inverse solution

• Re-formulate as a **discrete** linear inverse problem with dictionary of  $\Delta$ -shifted functions:

$$\{f(t - n\Delta)\}$$

# Modern sparse inverse solution

• Re-formulate as a **discrete** linear inverse problem with dictionary of  $\Delta$ -shifted functions:

$$\{f(t - n\Delta)\}$$

• Enforce sparsity with a convex objective function for coefficients  $\vec{x}$ :

$$\arg\min_{\vec{x}} ||y(t) - \sum_{n=1}^{N} x_n f(t - n\Delta)||_2^2 + \lambda ||\vec{x}||_1$$

LASSO [Tibshirani, 1996] Basis Pursuit [Chen, Donoho, Sanders, 1998]

#### Drawbacks of BP

$$\arg\min_{\vec{x}} ||y(t) - \sum_{n=1}^{N} x_n f(t - n\Delta)||_2^2 + \lambda ||\vec{x}||_1$$

- $\Delta$  should be small
  - approximation of f at non-integer  $\{\tau_j\}$
  - Mapping of  $\{x_n\}$  to  $\{a_j, \tau_j\}$ ?
- But  $\Delta$  can't be too small
  - Basis redundancy => convex approximation fails to produce sparsity [Candes, Romberg, Tau, 2006]
  - High computational cost

# 2D illustration of objective function and solutions

$$||y(t) - \sum_{n=1}^{N} x_n f(t - n\Delta)||_2^2 + \lambda ||\vec{x}||_1$$



gray - reconstruction error blue - L0 solution yellow - LS solution ( $\lambda = 0$ ) red - solutions for different  $\lambda$ 

# 2D illustration of objective function and solutions

$$||y(t) - \sum_{n=1}^{N} x_n f(t - n\Delta)||_2^2 + \lambda ||\vec{x}||_1$$



gray - reconstruction error blue - L0 solution yellow - LS solution ( $\lambda = 0$ ) red - solutions for different  $\lambda$ 





upward: BP solution downward: true waveform locations/amplitudes

Choose spacing such that:

$$af(t+\tau) \approx af(t) + a\tau f'(t), \qquad |\tau| < \Delta/2$$

Choose spacing such that:

$$af(t+\tau) \approx af(t) + a\tau f'(t), \qquad |\tau| < \Delta/2$$

Construct *interpolative* dictionary:

$$\{f(t - n\Delta), f'(t - n\Delta)\}$$

Choose spacing such that:

$$af(t+\tau) \approx af(t) + a\tau f'(t), \qquad |\tau| < \Delta/2$$

Construct *interpolative* dictionary:

$$\{f(t-n\Delta), f'(t-n\Delta)\}$$

Optimize (convex) objective:

$$\arg\min_{\vec{x},\vec{d}} ||y(t) - \sum_{n=1}^{N} x_n f(t - n\Delta) + d_n f'(t - n\Delta)||_2^2 + \lambda ||\vec{x}||_1$$

Choose spacing such that:

$$af(t+\tau) \approx af(t) + a\tau f'(t), \qquad |\tau| < \Delta/2$$

Construct *interpolative* dictionary:

$$\{f(t-n\Delta), f'(t-n\Delta)\}$$



Optimize (convex) objective:

$$\arg\min_{\vec{x},\vec{d}} ||y(t) - \sum_{n=1}^{N} x_n f(t - n\Delta) + d_n f'(t - n\Delta)||_2^2 + \lambda ||\vec{x}||_1$$

with  $|d_n| < |x_n|\Delta/2$ 





upward: estimated locations/amplitudes, with optimized  $\{\lambda, \Delta\}$  downward: true waveform locations/amplitudes











# Polar interpolation



# Polar interpolation





#### Polar interpolation



 $f(t+\tau) \approx c(t) + r\cos(\beta\tau)u(t) + r\sin(\beta\tau)v(t), \quad |\tau| < \Delta/2$ 

$$\begin{pmatrix} f(t - \frac{\Delta}{2}) \\ f(t) \\ f(t - \frac{\Delta}{2}) \end{pmatrix} = \begin{pmatrix} 1 & r\cos(\beta\Delta/2) & -r\sin(\beta\Delta/2) \\ 1 & r & 0 \\ 1 & r\cos(\beta\Delta/2) & r\sin(\beta\Delta/2) \end{pmatrix} \begin{pmatrix} c(t) \\ u(t) \\ v(t) \end{pmatrix}$$

#### Interpolator convergence rates



#### Continuous basis pursuit - polar

Choose  $\{\Delta, \beta, r\}$  such that

 $f(t+\tau) \approx c(t) + r\cos(\beta\tau)u(t) + r\sin(\beta\tau)v(t), \quad |\tau| < \Delta/2$ 

# Continuous basis pursuit - polar

Choose  $\{\Delta, \beta, r\}$  such that

 $f(t+\tau) \approx c(t) + r\cos(\beta\tau)u(t) + r\sin(\beta\tau)v(t), \quad |\tau| < \Delta/2$ 

Construct interpolative dictionary:

$$\{c(t - n\Delta), u(t - n\Delta), v(t - n\Delta)\}$$

#### Continuous basis pursuit - polar

Choose  $\{\Delta, \beta, r\}$  such that

 $f(t+\tau) \approx c(t) + r\cos(\beta\tau)u(t) + r\sin(\beta\tau)v(t), \quad |\tau| < \Delta/2$ 

Construct interpolative dictionary:

$$\{c(t - n\Delta), u(t - n\Delta), v(t - n\Delta)\}$$

Solve:  $\arg\min_{\vec{x},\vec{w},\vec{z}} ||y(t) - \sum_{n=1}^{N} x_n c(t - n\Delta) + w_n u(t - n\Delta) + z_n v(t - n\Delta) ||_2^2 + \lambda ||\vec{x}||_1$ with  $x_n \geq 0,$   $\sqrt{w_n^2 + z_n^2} \leq rx_n,$   $x_n r \cos(\beta \Delta/2) \leq w_n$   $with = \sum_{n=1}^{N} x_n c(t - n\Delta) + w_n u(t - n\Delta) + z_n v(t - n\Delta) ||_2^2 + \lambda ||\vec{x}||_1$ 













#### BP



gray - reconstruction error blue - L0 solution yellow - LS solution ( $\lambda = 0$ ) red - solutions for different  $\lambda$ 

CBP - Taylor1









upward: estimated locations/amplitudes, with optimized  $\{\lambda, \Delta\}$  downward: true waveform locations/amplitudes







small points: different  $\{\lambda, \Delta\}$ lines:

convex hull

large points: closest to ground truth (black point)



% reconstruction error

#### Application to neural "spike sorting"



#### Widely-used solution:

- 1. Threshold to find segments containing spikes
- 2. Reduce dimensionality of segments using PCA
- 3. Identify spikes using clustering (e.g., K-means)

Guaranteed failure for overlapping spikes!

Failures of clustering for near-synchronous spikes

synchronous spiking



PC 1 projection

[Pillow et. al. 2013]

Failures of clustering for near-synchronous spikes



[Pillow et. al. 2013]

Use CBP to solve for  $\{x_n, w_n, z_n\}$ :

 $\arg\min_{\vec{x},\vec{w},\vec{z}} ||y(t) - \sum_{n=1}^{\infty} x_n c(t - n\Delta) + w_n u(t - n\Delta) + z_n v(t - n\Delta) ||_2^2 + \lambda ||\vec{x}||_1$ 

Use CBP to solve for  $\{x_n, w_n, z_n\}$ :

 $\arg\min_{\vec{x},\vec{w},\vec{z}} ||y(t) - \sum_{n=1}^{N} x_n c(t - n\Delta) + w_n u(t - n\Delta) + z_n v(t - n\Delta) ||_2^2 + \lambda ||\vec{x}||_1$ 

Convert  $\{x_n, w_n, z_n\}$  back to  $\{a_j, \tau_j\}$ 



Use CBP to solve for  $\{x_n, w_n, z_n\}$ :

 $\arg\min_{\vec{x},\vec{w},\vec{z}} ||y(t) - \sum_{n=1}^{\infty} x_n c(t - n\Delta) + w_n u(t - n\Delta) + z_n v(t - n\Delta) ||_2^2 + \lambda ||\vec{x}||_1$ 

Convert  $\{x_n, w_n, z_n\}$  back to  $\{a_j, \tau_j\}$ 



Solve for f (least squares):

$$\arg\min_{f} ||y(t) - \sum_{j} a_{j} f(t - \tau_{j})||_{2}^{2}$$

Use CBP to solve for  $\{x_n, w_n, z_n\}$ :

 $\arg\min_{\vec{x},\vec{w},\vec{z}} ||y(t) - \sum_{n=1}^{N} x_n c(t - n\Delta) + w_n u(t - n\Delta) + z_n v(t - n\Delta) ||_2^2 + \lambda ||\vec{x}||_1$ 

Convert  $\{x_n, w_n, z_n\}$  back to  $\{a_j, \tau_j\}$ 



Solve for f (least squares):

$$\arg\min_{f} ||y(t) - \sum_{j} a_{j} f(t - \tau_{j})||_{2}^{2}$$

Use CBP to solve for  $\{x_n, w_n, z_n\}$ :

 $\arg\min_{\vec{x},\vec{w},\vec{z}} ||y(t) - \sum_{n=1}^{N} x_n c(t - n\Delta) + w_n u(t - n\Delta) + z_n v(t - n\Delta) ||_2^2 + \lambda ||\vec{x}||_1$ 

Convert  $\{x_n, w_n, z_n\}$  back to  $\{a_j, \tau_j\}$ 



Solve for f (least squares):  $\int_{f} \arg\min_{f} ||y(t) - \sum_{j} a_{j} f(t - \tau_{j})||_{2}^{2}$ 

Binarize to obtain final spike estimates

Simulated data [Quiroga et. al. 2004]

#### clustering (K-means)











#### Simulated data (4 data sets) [Quiroga et. al. 2004]



SPC = super-paramagnetic clustering [Quiroga et. al. 2004] BEER = "best ellipsoid error rate" - elliptical clustering, trained on ground truth data [Harris et. al. 2000]





#### Tetrode electrode assembly

Thomson Recording GmbH, Giessen Germany

# Tetrode data, with intracellular ground truth (for one cell) [Harris et. al., 2000]

#### clustering (K-means)

CBP



PC 1



PC 1

#### Tetrode data, intracellular ground truth (for one cell) [Harris et. al., 2000]



# Conclusions

- CBP: Sparse signal decomposition with continuously shifted feature waveforms
  - Translation manifold approximated with circular arcs
  - Can significantly outperform standard BP/LASSO
  - State-of-the-art results in neural spike identification
- Extensions:
  - Priors on coefficient amplitudes
  - Proximal methods / ADMM
  - Other transformations (dilation, rotation, modulation)