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Photographing moving scenes could
only be done using short exposure
times, until...



Amit Agrawal, one of the The flutter shutter
inventors of the flutter camera.
shutter method.

Anat Levin, one of the The motion-invariant
inventors of the photography camera.
motion-invariant

photography method.



Input Photo Deblurred Result

Agrawal et al. "Resolving Objects at Higher
Resolution from a Single Motion-Blurred Image",
CVPR, 2007.



Traditional Camera : Shutter is
OPEN




Flutter Shutter Camera : the Shutter
OPENS /CLOSES




Short Exposure Coded Exposure




Gain

Gain

Gain

Gain

Standard camera

.IﬂJlIH\

Alternate

Random

Agrawal et al. Code

Time




» Optimal code: J. Jelinek. “Designing the optimal shutter sequences
for the flutter shutter imaging method.” 2010.

» Gain: The gain (RMSE) of a flutter shutter is bounded above

by 4/1 + 07% and “The gain for computational imaging is
significant only when the average signal level J is considerably
smaller than the read noise variance 02" O. Cossairt, M. Gupta,
and S.K. Nayar. “When Does Computational Imaging Improve
Performance?” 2012.



Overview

» What are the flutter shutter acquisition
formulae?

» Main question: What is the MSE?

» Consequence 1) Optimal flutter shutter code for
known velocity
Byproduct: optimal temporal filter for blind motion blur

deconvolution
» Consequence 2) Optimal snapshot theory

» Consequence 3) Paradox and its solution:
An optimal (MSE) aperture theory for random velocity

models



Image Model

Camera g

u(x)

» At length of a time interval
> u-]l[ 1 1]*g*/|dea|
’2
observable landscape.

Assumption: [—m, 7] band
limited and u € L*(R) n L?(R)

landscape
intensity

x

A ‘_‘Ai]‘ snapshot” at a pixel at position n is a Poisson random
variable

Pi([0.At] x [n— .n+ 3]) ~ P (f u<n)dt) |




Image Model

Moving v . i
camera » At length of a time interval

» v relative velocity (unit: pixels
u(x)
per second)
oy = ]]_[_%7%] * g o | ideal
observable landscape.
Assumption: [—m, 7] band
limited and u € L*(R) n L?(R)

landscape
intensity

x

A ‘_‘Ai]‘ snapshot” at a pixel at position n is a Poisson random
variable

P,([0,At] x [n— 1 n+ 1]) ~P (Jm u(n— vt)dt) )

0




The Numerical Flutter Shutter Setup

1. The camera takes a burst of L images using exposure time At;

2. The k-th elementary image is assigned a numerical weight
a € R;

3. All images are added together to get one observed image.
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A non positive flutter The modulus of its Fourier
shutter function. transform.
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3 x 10° candidate codes. We chose a code that (i) maximizes the
minimum of the magnitude of the DFT values and (ii) minimizes
the variance of the DFT values. The near-optimal code we found is
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The Agrawal et al. code. The binary flutter shutter function
for the optimized Agrawal et al.

code.

L—1

Code: (ao,...,a1—1) € R' < Flutter shutter function: at) = Z alLika,(k+1)aef (t)-
k=0



-1
Code: (g, ...,a1—1) € RL < Flutter shutter function: at) = Z arlkat,(k+1)ae[(t)-
k=0

Definition

(k+1)At

» Numerical samples: obs(n) ~ Zi (1) kP(kAt

u(n— vt)dt) .

> Analog samples (a(t) € [0,1]): obs(n) ~ P (L(a(z) * u)(n)).

v

» Band limited interpolate: obs(x) ~ >, ., obs(n)sinc(x — n).

Continuous numerical flutter shutter : any function a € L%(R).

Velocity v : unit in pixel(s) per At.



Observed Images Varying the Code

Agrawal et al. code.  Random uniform on The motion-invariant
[—1,1] code. photography code.



Inverse Filter Design

Flutter shutter

Numerical

Analog

Flutter shutter
function a(t)

E (obs(n))
(observed)

var(obs(n))
(observed)

Inverse filter 4(&)

a(t) = Y28 carlkac,krnyae(t)
(with ax € R and At > 0)

(v (5) = u) (m)
(207 () ) (0

]]-[—77,71'] (6)
a(&v)

a(t) € [0,1]




Deconvolved Varying the Code

Code: Agrawal et al.. Code: random
RMSE = 2.54 uniform on [—1,1]. motion-invariant
RMSE = 2.25 photography.
RMSE = 2.31



Usual Codes: Agrawal et al.
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The binary flutter shutter function The Fourier transform (modulus) of
for the optimized Agrawal et al. the flutter shutter function with the
code.

Agrawal et al. code.
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a(t) =X, _, akligae, (k+1)ae[ (1) &(&) = sinc (%) e 2 Y, _,ake kEAL



Poisson noise. Deconvolved Poisson noise using
the Agrawal et al. code.




Flutter Shutter Formalism Summary

Flutter shutter type Numerical Analog
L-1
Flutter shutter | a(t) = >, 7y axlkar,k+1)ae((t) a(t) € [0,1]
function a(t) (with o, € R and At > 0)
E (obs(n)) (%a (;) * u) (n) Lla (;) % u)(n)
(observed)
var(obs(n)) (%az (;) * u) (n) %(OL (;) * u)(n)
(observed)
Inverse filter §(&) 1[7&7?57;])(5) ]1[7&7?57;])(5)
E(fiest (€)) WOy 21 (€) WO 21 (6)
(deconvolved)
lleliZy o llul alqllu
var (fiest (€)) i) Pl (O
(deconvolved)
VSE L HU”Lllf(){H;l”LZ(R) g L HuHng();\j;:\Ll(R)d




Flutter Shutter Formalism Summary

Flutter shutter type

Numerical

Analog

Flutter shutter
function o (t)

E (obs(n))
(observed)

var(obs(n))
(observed)

Inverse filter 4(&)

E(fiest (£))

(deconvolved)

var(fiest (£))

(deconvolved)

MSE

a(t) = Xi;é oL eae, (k4+1)aef (£)

(with oy € R and At > 0)
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Flutter Shutter Formalism Summary

Flutter shutter type

Numerical

Analog

Flutter shutter
function o (t)
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(observed)
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Inverse filter 4(€)
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(deconvolved)
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Flutter Shutter Formalism Summary

Flutter shutter type

Numerical

Analog

Flutter shutter
function a(t)
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(observed)
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Inverse filter 4(&)
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Flutter Shutter Formalism Summary

Flutter shutter type

Numerical

Analog

Flutter shutter
function o(t)

E (obs(n))
(observed)

var(obs(n))
(observed)

Inverse filter §(&)
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MSE
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Theorem

2
HO‘” L2(|R)

E@a

. lull 2
» Numerical MSE= —-® {7

» Analog MSE= HUHQL;(R) ST—FW |\|ggEL\lf()ﬂ|?2) dg.

Proof: involves a slightly elaborated use of Poisson’s summation
formula.

Recall: a(t) = Zi;é il kae, (kr1)ae(t)-

Analog flutter shutter function a(t) € [0, 1].



Every Flutter Shutter Function Can Be Made Discrete

Theorem

Let 3 € L?(R) be a continuous flutter shutter function, and
v|At <1

a(t) = Z arlikat,(k+1)ae(t)
keZ

1 (riviat B(é)elg
g

27 —7|v|At SINC E)

o ek de.

N

then, &(v€) = B(v€) on [—m,].

Proof: direct consequence of the Fourier series inversion theorem.

Velocity v: unit in pixel(s) per At.



Coded Motion-Invariant Photography
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The flutter shutter function for a Red: Fourier transform (modulus) of
motion invariant photography code. the ideal motion-invariant

photography function.

Blue: Fourier transform (modulus) of
the motion-invariant photography
code, approximating the function in
red.

No need of motion direction a priori knowledge.
Avoids physical camera acceleration.



Optimizing Flutter Shutter, Patents

» R. Raskar, J. Tumblin, and A. Agrawal. Method for deblurring
images using optimized temporal coding patterns, 2009. US
Patent 7,580,620.

» R. Raskar. Method and apparatus for deblurring images,
2010. US Patent 7,756,407.

» S. McCloskey, J. Jelinek, and K.W. Au. Method and system
for determining shutter fluttering sequence, 2009. US Patent
12/421,296.

» A. Levin, P. Sand, T.S. Cho, F. Durand, and W.T. Freeman.
Method and apparatus for motion invariant imaging, 2009.
US Patent 20,090,244,300.



Optimal Flutter Shutter in Terms of MSE

Theorem

Consider a landscape u(x — vt) moving at velocity v. Then an
optimal continuous flutter shutter function minimizing the
MSE is equal to a*(t) = sinc(tv).

a 2
MSE= ”u”Ll('R) §r |\|&!£L\2/()"|22) d& > 0. (Even though the exposure time

is |nf|n|te.)

Velocity v: unit in pixel(s) per At.



Agrawal et al. Random The motion- The sinc-code,

code, restored uniform on invariant restored image.
image. [-1,1] code,  photography
restored image. code, restored
image.

Code type: | Agrawal et al. | Random code | M.I.P. code | Sinc code

RMSE 2.54 2.25 231 1.46

u]
o)
I
i
it




The sinc-code

The flutter shutter function for a
sinc-code.

a(t) = 320 el kae, (k41yae ()

B0

0.862

0.856 1

0.856 1

0.554 1

0852 1

The Fourier transform (modulus) of
the sinc-code, approximating the
Fourier transform of the ideal gain
function.

—iEAt _ .
&(€) = sinc (—%ﬁt) e 2 Zi=é age kEAL,



The Flutter Shutter Paradox in Quotes

» Agrawal et al.: “Let us compare to an image captured with an
exposure of a single chop, which is equal to T/m seconds. As
the cumulative exposure time for coded exposure is roughly
T/2, MSE is potentially better by m/2 in the blurred
region”

» Levin et al.: “(about the Agrawal et al. flutter shutter) ...the
amount of recorded light is halved. Because of the loss of
light, the vertical budget is reduced from 2T to T for each

wyx' and “pends energy outside the slope wedge and thus
does not make a full usage of the vertical k,, budget”



Optimal Snapshot in Terms of MSE

Theorem

Consider a landscape u(x — vt) moving at velocity v. Then the
optimal aperture time At* of a snapshot is designed such that
|v|At* ~ 1.0909. Its MSE is

o Vlivlpwy (T £2 (VvAt*)
MSE(AT) = =5, _rsin2(SAE)y 4 a
2

Velocity v: unit in pixel(s) per At.



RMSE comparison of classic flutter shutters with respect

to the optimal snapshot

Flutter shutter strategy Gain in terms of RMSE
Optimal snapshot 1
Agrawal et al. flutter shutter (code) 0.5636
(v=1At=1)
Ideal motion-invariant photography 0

(infinite time exposure)

Motion-invariant photography 0.6233
(with [¥|=1and T =1)

Ideal flutter shutter (sinc) 1.17
(infinite time exposure)

Less than 1 indicates a loss compared to the optimal snapshot.



For a known velocity v:

1. optimal flutter shutter is derived from a sinc(vt) function
2. optimal snapshot satisfies |v|At* ~ 1.0909

3. the gain of the flutter shutter with respect to the optimal
snapshot is of 1.17 in terms in RMSE
theory applies to the Levin et al. motion-invariant
photography
Y. Tendero, J.-M. Morel and B. Rougé. “The Flutter Shutter Paradox”

SIAM Journal on Imaging Sciences

4. this 1.17 bound is also valid when considering sensor readout
and obscurity noise (finite variances)
Y. Tendero and J.-M. Morel. “On the Mathematical Foundations of
Computational Photography” UCLA CAM Report 13-65

5. random codes are not the solution
Y. Tendero. “Are Random Flutter Shutter Codes Good Enough?” UCLA
CAM Report 13-84



A Solution to the Flutter Shutter Paradox

Assume the velocity v comes from a compactly supported
probability density p(v).

» Forward analysis: formula links p(v) and the flutter shutter
code

» Perform the same optimization for the snapshot: optimal
exposure time

» Backward analysis: get p(v) from a given code

Y. Tendero and J.-M. Morel. “A Theory of Optimal Flutter Shutter For
Probabilistic Velocity Models.” UCLA CAM Report 13-80.



The gain in terms of RMSE is

» 5%, when p is uniform and exposure time 10 times greater
than the optimal snapshot.

» 25%, when p is (truncated) Gaussian and exposure time 10
times greater than the optimal snapshot.

» 385%, when p(v) = 0.9950(v) + 0.01615(v) and exposure
time 25 times greater than the optimal snapshot.

The flutter shutter function for a The modulus of its Fourier
(truncated) Gaussian velocity transform.
distribution.



The probability density
associated with the Agrawal et
al. code (“Resolving objects at
higher resolution from a single
motion-blurred image”, CVPR,
2007.) : x-axis motion (in
signed pixels), y-axis: the
logarithm of the velocity
distribution (log(1 + p(v))).

= Scond ALyawal 6Tl coe

The probability density
associated with the second
Agrawal et al. (“Coded exposure
deblurring: Optimized codes for
PSF estimation and
invertibility”, CVPR, 2009.)
code: x-axis motion (in signed
pixels), y-axis: the logarithm of
the velocity distribution

(log(1 + p(v))).



The sinc temporal filter

Beyond pure MSE gain, make camera use more flexible

» The numerical flutter shutter is a temporal filter

» The observed is guarantee sharp, as soon as |v| < 1
pixel /frame (sampling theorem).

The sinc flutter shutter is the simplest local motion stabilizer.

Images burst = numerical flutter shutter: ) o, 0bsy.

(-0.0141, 0.0296, -0.0917, 1.0000, -0.0917, 0.0296, -0.0141, 0.0082)



opyright : Middleburry.













Conclusion

1. Provided v is known, the optimal flutter shutter is derived
from sinc(vt)

2. The optimal snapshot has a blur support of approximatively
1.0909 pixel.

3. Gain in terms of RMSE: 17%.

4. Optimize for unknown v, analytical formulae linking code and
p(v) (forward and backward analysis).

5. The theory also provides the optimal exposure time, provided
p(v).

6. The sinc code permits to perform a blind uniform motion blur
deconvolution.



