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Background

General convex separable minimization model

x∗ = arg min
x∈Rn

(f1 ◦B)(x) + f2(x)

B : Rn → Rm a linear transform.

f1, f2 are proper l.s.c convex function defined in a Hilbert space.

f2 is differentiable on Rn with a 1/β-Lipschitz continuous gradient for some
β ∈ (0,+∞)
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Background

Operator splitting methods

min
x∈X

f(x) + h(x)

where f, h are proper l.s.c. convex and h is differentiable on X with a
1/β-Lipschitz continuous gradient

Define proximal operator proxf as

proxf : X → X
x 7→ arg min

y∈X
f(y) + 1

2‖x− y‖
2
2,

Proximal forward-Backward splitting (PFBS)1

xk+1 = proxγf (xk − γ∇h(xk)),

for 0 < γ < 2β,

Many more other variants and related work (partial list: ISTA, FPCA,
FISTA,GFB...).

An important assumption: proxf (x) is an easy problem !!
1Moreau 1962; Lions-Mercier; 1979, Combettes- Wajs, 2005; FPC
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Background

Soft shrinkage

For f(x) = µ‖x‖1,

proxf (x) = sign(x) ·max(|x| − µ,0)

Componentwise thus efficient.

Generally no easy form for prox‖Bx‖1(x) for non-invertible B.

Largely used in compressive sensing and imaging sciences. Similar formula for
matrix nuclear norm minimization (restore low rank matrix) or other matrix
sparsity.
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Background

Methods on splitting form

(SPP ) max
y

inf
x,z

{f1(z) + f2(x) + 〈y,Bx− z〉}

Augmented Lagrangian:

Lν(x, z; y) = f1(z) + f2(x) + 〈y,Bx− z〉+
ν

2
‖Bx− z‖2

Alternating direction of multiplier method (ADMM) (Glowinski et al. 75,
Gabay et al. 83)

xk+1 = arg minx L
ν(x, zk; yk)

zk+1 = arg minz L
ν(xk+1, z; yk)

yk+1 = yk + γν(Bxk+1 − zk+1)

Split Inexact Uzawa (SIU/BOS) Method2
xk+1 = arg minu L

ν(x, zk; yk) + ‖x− xk‖2D1

zk+1 = arg minz L
ν(xk+1, z; yk) + ‖z − zk‖2D2

Cyk+1 = Cyk + (Bxk+1 − zk+1)

2
Zhang-Burger-Osher,2011
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Background

Methods for Primal-Dual from (PD)

(PD) : min
x

sup
y
−f∗1 (y) + 〈y,Bu〉+ f2(x)

Primal-dual hybrid Gradient (PDHG) Method (Zhu-Chan, 2008)

yk+1 = arg max
y
−f∗1 (y) + 〈y,Bxk〉 − 1

2δk
‖y − yk‖22

xk+1 = arg min
x
f2(x) + 〈BT yk+1, x〉+

1

2αk
‖x− xk‖22

Modified PDHG (PDHGMp, Esser-Zhang-Chan,2010, equivalent to SIU on
(SPP); Pock-Cremers-Bischof-Chambolle, 2009, Chambolle-Pock,
2011(θ = 1))
Replace pk in first step of PDHG with 2pk − pk−1 to get PDHGMp:

xk+1 = arg min
x
f2(x) +

〈
BT
(

2yk − yk−1
)
, x
〉

+
1

2α
‖x− xk‖22

yk+1 = arg min
y
f∗1 (y)− 〈y,Bxk+1〉+

1

2δ
‖y − yk‖22
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Background

Connections3

14 E. Esser, X. Zhang and T.F. Chan

(P) minu FP (u)

FP (u) = J(Au) +H(u)

(D) maxp FD(p)

FD(p) = −J∗(p)−H∗(−AT p)

(PD) minu supp LPD(u, p)

LPD(u, p) = 〈p,Au〉 − J∗(p) +H(u)

(SPP) maxp infu,w LP (u,w, p)

LP (u,w, p) = J(w) +H(u) + 〈p,Au− w〉
(SPD) maxu infp,y LD(p, y, u)

LD(p, y, u) = J∗(p) +H∗(y) + 〈u,−AT p− y〉
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Primal-Dual Proximal Point on
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=

PDHG
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�

pk+1 →
2pk+1 − pk

uk →
2uk − uk−1

Split
Inexact
Uzawa

on (SPP)

�� PDHGMp PDHGMu ��

Split
Inexact
Uzawa

on (SPD)

Legend: (P): Primal
(D): Dual
(PD): Primal-Dual
(SPP): Split Primal
(SPD): Split Dual

AMA: Alternating Minimization Algorithm (4.2.1)
PFBS: Proximal Forward Backward Splitting (4.2.1)
ADMM: Alternating Direction Method of Multipliers (4.2.2)
PDHG: Primal Dual Hybrid Gradient (4.2)
PDHGM: Modified PDHG (4.2.3)
Bold: Well Understood Convergence Properties

Fig. 4.1. PDHG-Related Algorithm Framework

3Esser-Zhang-Chan, SIIMS, 2010
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Background

First order methods in imaging sciences

Many efficient algorithms exist: ”augmented lagrangian”, ”splitting
methods”,”alternating methods”, ”primal-dual”, ”fixed point methods” etc.

Huge number of seemingly related methods.

Many of them requires subproblem solving involving inner-iterations, ad-hoc
parameter selections, which can not be clearly controlled in real
implementation.

Need for methods with simple, explicit iterations capable of solving large
scale, often non-differentiable convex models with separable structure

Convergence analysis are mainly for the objective function, or in ergodic
sense. Most of them have sublinear convergence (O(1/N) or O(1/N2)).
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Primal dual fixed point algorithm

Primal dual fixed point methods
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Primal dual fixed point algorithm

Fixed point algorithm based on proximity operator (FP2O)

For a given b ∈ Rn, solve for
proxf1◦B(b)

H(v) = (I − prox f1
λ

)(Bb+ (I − λBBT )v) for all v ∈ Rm

FP2O (Micchelli-Shen-Xu, 11’)

Step 1: Set v0 ∈ Rm, 0 < λ < 2/λmax(BBT ), κ ∈ (0, 1).
Step 2: Calculate v∗, which is the fixed point of H, with iteration

vk+1 = Hκ(vk)

where Hκ = κI + (1− κ)H for κ ∈ (0, 1)
Step 3: proxf1◦B(b) = b− λBT v∗.
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Primal dual fixed point algorithm

Solve for general problem

Solve for
x∗ = arg min

x∈Rn
(f1 ◦B)(x) + f2(x)

PFBS FP2O (Argyriou-Micchelli-Pontil-Shen-Xu,11’)

Step 1: Set x0 ∈ Rn, 0 < γ < 2β.
Step 2: for k = 0, 1, 2, · · ·

Calculate xk+1 = proxγf1◦B(xk − γ∇f2(xk)) using FP2O.
end for

Note: Inner iterations are involved, no clear stopping criteria and error analysis!
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Primal dual fixed point algorithm

Primal dual fixed point algorithm

Primal-dual fixed points algorithm based on proximity operator, PDFP2O.

Step 1: Set x0 ∈ Rn, v0 ∈ Rm, 0 < λ ≤ 1/λmax(BBT ), 0 < γ < 2β.
Step 2: for k = 0, 1, 2, · · ·

xk+1/2 = xk − γ∇f2(xk),

vk+1 = (I − prox γ
λ
f1)(Bxk+1/2 + (I − λBBT )vk),

xk+1 = xk+1/2 − λBT vk+1.
end for

No inner iterations if prox γ
λ
f1(x) is an easy problem.

Extension of FP22O and PFBS.

Can be extended to κ− average fixed point iteration
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Primal dual fixed point algorithm

Fixed point operator notion

Define T1 : Rm × Rn → Rm as

T1(v, x) = (I − prox γ
λ
f1)(B(x− γ∇f2(x)) + (I − λBBT )v)

and T2 : Rm × Rn → Rn as

T2(v, x) = x− γ∇f2(x)− λBT ◦ T1.

Denote T : Rm × Rn → Rm × Rn as

T (v, x) = (T1(v, x), T2(v, x)) .
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Primal dual fixed point algorithm

Convergence of PDFP2O

Theorem

Let λ > 0, γ > 0. Suppose that x∗ is a solution of

x∗ = arg min
x∈Rn

(f1 ◦B)(x) + f2(x)

if and only if there exists v∗ ∈ Rm such that u∗ = (v∗, x∗) is a fixed point of T .

Theorem

Suppose 0 < γ < 2β, 0 < λ ≤ 1/λmax(BBT ) and κ ∈ [0, 1). Let uk = (vk, xk)
be a sequence generated by PDFP2O. Then {uk} converges to a fixed point of T
and {xk} converges to a solution of problem

x∗ = arg min
x∈Rn

(f1 ◦B)(x) + f2(x)
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Primal dual fixed point algorithm

Convergence rate analysis

Condition

For 0 < γ < 2β and 0 < λ ≤ 1/λmax(BBT ), there exist η1, η2 ∈ [0, 1) such that
‖I − λBBT ‖2 ≤ η21 and

‖g(x)− g(y)‖2 ≤ η2‖x− y‖2 for all x, y ∈ Rn,

where g(x) = x− γ∇f2(x).

Remarks

If B has full row rank, f2 is strongly convex, this condition can be satisfied.

As a typical example, consider f2(x) = 1
2‖Ax− b‖22 with ATA full rank.
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Primal dual fixed point algorithm

Linear convergence rate

Theorem

Suppose the above condition holds true. Let uk = (vk, xk) be a fixed point
iteration sequence of operator T . Then the sequence {uk} must converge to the
unique fixed point u∗ = (v∗, x∗) ∈ Rm × Rn of T , with x∗ the unique solution of
the minimization problem. Furthermore,

‖xk − x∗‖2 ≤
cθk

1− θ ,

where c = ‖u1 − u0‖λ, θ = κ+ (1− κ)η ∈ (0, 1) and η = max{η1, η2}.

Let B = I, λ = 1, f2(x) strongly convex, then PFBS converges linearly.

If B is full row rank, then PFP2O converges linearly.

Related work: linear Convergence of the ADMM methods (Luo 2012,
Deng-Yin, CAM12-52, Goldstein -O’Donoghue -Setzer,2012)
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Primal dual fixed point algorithm

Connection with other primal dual algorithms

Table : The comparison between CP (θ = 1) and PDFP2O.

PDHGm/CP (θ = 1) PDFP2O

Form
vk+1 = (I + σ∂f∗1 )−1(vk +
σByk)

vk+1 = (I + λ
γ ∂f

∗
1 )−1(λγ vk +

Byk)
xk+1 = (I + τ∇f2)−1(xk −
τBT vk+1)

xk+1 = xk − γ∇f2(xk) −
γBT vk+1

yk+1 = 2xk+1 − xk yk+1 = xk+1 − γ∇f2(xk+1) −
γBT vk+1

Condition 0 < στ < 1
λmax(BBT )

0 < γ < 2β, 0 < λ ≤ 1
λmax(BBT )

Relation σ = λ/γ, τ = γ
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Primal dual fixed point algorithm

Connection with Splitting types of method

min
x∈Rn

µ‖Bx‖1 +
1

2
‖Ax− b‖22

(ASB4)


xk+1 = (ATA+ νBTB)−1(AT b+ νBT (dk − vk)), (1a)

dk+1 = prox 1
ν
f1

(Bxk+1 + vk),

vk+1 = vk − (dk+1 −Bxk+1),

for ν > 0.

SIU 5: (1a) is replaced by

xk+1 = xk − δAT (Axk − b)− δνBT (Bxk − dk + vk)

PDFP2O: (1a) is replaced by

xk+1 = xk− δAT (Axk− b)− δνBT (Bxk−dk + vk)− δ2νATABT (dk−Bxk)
4Alternating split Bregman (Goldstein-Osher,08’) (ADMM)
5Split Inexact Uzawa, Zhang-Burger-Osher, 10’
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Primal dual fixed point algorithm

Example: Image restoration with total variation

Image superresolution: subsampling operator A is implemented by taking the
average of every d× d pixels and sampling the average, if a zoom-in ratio d is
desired.

CT reconstruction: A is parallel beam radon transform.

Parallel MRI:

Observation model:
bj = DFSjx+ n

where bj is the vector of measured Fourier coefficients at receiver j, D is a
diagonal downsampling operator, F is the Fourier transform, Sj corresponds to
diagonal coil sensitivity mapping for receiver j and n is gaussian noise.
Let Aj = DFSj , we can recover images x by solving

x∗ = arg min
x∈Rn

µ‖Bx‖1 +
1

2

N∑
j=1

‖Ajx− bj‖22
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Primal dual fixed point algorithm

Super-resolution Results

Figure : Super resolution results from 128× 128 image to 512× 512 image by ASB, CP,
SIU and PDFP2O corresponding to tolerance error ε = 10−4

Original Zooming ASB, PSNR=29.37

CP, PSNR=29.32 SIU, PSNR=29.31 PDFP2O, PSNR=29.32
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Primal dual fixed point algorithm

Image superresolution

Table : Performance comparison among ASB, CP, SIU and PDFP2O for image
superresolution. For ASB, NI = 2, ν = 0.01. For CP, NI = 1, σ = 0.005. For SIU,
δ = 24, ν = 0.006. For PDFP2O, γ = 30, λ = 1/6.

ε = 10−2 ε = 10−3 ε = 10−4

ASB (21, 1.58, 29.34) (74, 5.55, 29.38) (254, 19.14, 29.37)
CP (46, 1.94, 28.97) (150, 6.35, 29.24) (481, 20.37, 29.32)
SIU (42, 1.14, 28.91) (141, 3.78, 29.22) (446, 12.45, 29.31)

PDFP2O (38, 0.97, 28.98) (128, 3.25, 29.25) (417, 10.59, 29.32)
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Primal dual fixed point algorithm

Computerized tomography (CT) reconstruction

Figure : A tomographic reconstruction example for a 128× 128 image, with 50
projections corresponding to tolerance error ε = 10−4

Original FBP ASB, PSNR=32.43

CP, PSNR=32.32 SIU, PSNR=32.23 PDFP2O, PSNR=32.23

24/38



Primal dual fixed point algorithm

Computerized Tomography (CT) reconstruction

Table : Performance evaluation comparison among ASB, CP, SIU and PDFP2O in CT
reconstruction. For ASB, CP, SIU, empirically ”best” parameter sets are used.

ε = 10−3 ε = 10−4 ε = 10−5

ASB1 (129, 2.72, 31.97) (279, 5.87, 32.43) (1068, 24.49, 32.45)
ASB2 (229, 4.79, 31.75) (345, 7.24, 32.26) (492, 10.33, 32.41)

CP (167, 3.37, 31.80) (267, 5.40, 32.32) (588, 12.73, 32.45)
SIU (655, 4.61, 31.70) (971, 6.84, 32.23) (1307, 9.20, 32.38)

PDFP2O (655, 4.61, 31.70) (971, 6.81, 32.23) (1307, 9.15, 32.38)
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Primal dual fixed point algorithm

Parallel MRI6

Figure : In-vivo MR images acquired eight-channel head data

Coil1 Coil2 Coil3 Coil4

(b) Coil5 Coil6 Coil7 Coil8

6Ji J X, Son J B and Rane S D 2007 PULSAR: a MATLAB toolbox for parallel magnetic
resonance imaging using array coils and multiple channel receivers
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Primal dual fixed point algorithm

Parallel MRI reconstruction

SOS SENSE SPACE-RIP GRAPPA

R=2

R 
O 
 IR

O
S

R
O
N

50 100 150 200 250

50

100

150

200

250

AP 0 0.001939 0.001939 0.001624
SNR 36.08 31.08 31.08 29.06
time 0.19 5.94 155.88 44.85

ASB CP SIU PDFP2O

R=2
AP 0.000811 0.000823 0.000823 0.000822

SNR 39.20 39.27 39.26 39.36
time 1.81 3.72 1.87 1.84
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Extensions

Extensions
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Extensions

Extensions

With convex constraints:

arg min
x∈C

(f1 ◦B)(x) + f2(x),

Nonconvex optimization

arg min (f1 ◦B)(x) + f2(x),

where f2(x) is nonconvex (for example nonlinear least square). Application:
nonlinear inverse problem

Acceleration and preconditioning.
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Extensions

With extra convex constraints

arg min
x∈C

(f1 ◦B)(x) + f2(x),

Let ProjC denote the projection onto the (closed) convex set C and Proxf1 denote
the proximal point solution.

Convert the problem to

arg min
x

(f̃1 ◦ B̃)(x) + f2(x),

where B̃ =

(
B
I

)
, (f̃1 ◦ B̃)(x) = (f1 ◦B)(x) + χC(x).

Apply PDFP2O, we obtain the scheme (infeasible scheme)


vk+1 = (I − prox γ

λ
f1)(B(xk − γ∇f2(xk)) + (I − λBBT )vk − λByk),

yk+1 = (I − projC)((xk − γ∇f2(xk))− λBT vk + (1− λ)yk),

xk+1 = xk − γ∇f2(xk)− λBT vk+1 − λyk+1.

Convergence is derived directly from PDFP2O.
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Extensions

Feasible iterative scheme


yk+1 =ProjC(xk − γ∇f2(xk)− λBT vk)

vk+1 =(I − Prox γ
λ
f1)(Byk+1 + vk)

xk+1 =ProjC(xk − γ∇f2(xk)− λBT vk+1)

Equivalent iteration:
yk+1 =ProjC(xk − γ∇L(xk, v̄k))

v̄k+1 = arg maxL(yk+1, v)− γ

2λ
‖v − v̄k‖2

xk+1 =ProjC(xk − γ∇L(xk, v̄k+1))

where L(x, v) = f2(x)− f∗1 (v) + 〈Bx, v〉, v̄k = λ
γ (vk)
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Extensions

Convergence for feasible iterative scheme

For x ∈ C, v ∈ S, define

T (x, v) :

T1(x, v) = Proxλ
γ
f∗1

(
λ

γ
B ◦ ProjC(x− γ∇f2(x)− γBT v) + v)

T2(x, v) = ProjC(x− γ∇f2(x)− γBT ◦ T1(x, v))

The solution pair (x∗, v∗) satisfy T (x∗, v∗) = (v∗, x∗).

If 0 < γ < 2β, 0 < λ < 1
‖BBT ‖ , then the sequence converges.

Related reference:
Krol A Li S Shen L and Xu Y 2012 Preconditioned Alternating Projection Algorithms for Maximum a
Posteriori ECT Reconstruction Inverse Problem 28 115005.
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Extensions

Example: CT reconstruction with real data

PDFP2O PDFP2OC

50 steps

100 steps

Figure : Real CT reconstruction with nonnegative constraint (40 projections )
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Extensions

Example: Parallel MRI with nonnegative constraint

SNR=38.06, 20.1s SNR=39.55, 10.3s

Figure : Subsampling R = 4
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Extensions

Nonconvex optimization for nonlinear inverse problem

min
x
‖F (x)− y‖22 + λ‖Wx‖1, subject to l ≤ x ≤ u.

Let f(x) = ‖F (x)− y‖22.

yk = ProxγC (xk − τ
(
∇xf(xk) + λµW T bk

)
),

hk = bk +Wyk,

bk+1 = hk − shrink(hk, 1/µ),

xk+1 = ProxγC (xk − τ
(
∇xf(xk) + λµW T bk+1)

)
,
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Extensions

Application for Quantitative photo-acoustic
reconstruction8

Reconstruction time: 180 s v.s 887s SplitBregman (L-BFGS for the subproblem) 7

Figure : Quantitative photo-acoustic reconstruction for the absorption and (reduced)
scattering.

7H. Zhao, S. Osher and H. Zhao: Quantitative Photoacoustic Tomography, 2012
8Ongoing joint work with X. Zhang, W Zhou and H. Gao 36/38



Conclusions

Summary and perspectives

First order methods are efficient and enjoy comparative numerical
performance, especially when the parameters are properly chosen.

For both ASB and CP, inexact solver such as CG method can be applied in
practice. However the choice of inner iteration is rather ad-hoc. For both SIU
and PDFP2O, the iteration schemes are straightforward since only one inner
iteration is used and easy to implement in practice and can be easily,
especially when one extra constraint is present. It can be also extended to
low rank matrix or other more complex sparsity reconstruction.

Parameter choices for all the methods. The rules of parameter selection in
PDFP2O has some advantages.

The convergence and the relation of convergence rate and condition number
of the operators is clearly stated under this theoretical framework.

Future work: convergence for nonconvex problems; acceleration and
preconditioning; parellel and distributed, decentralized computing .
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Conclusions
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