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Background

General convex separable minimization model

x* =arg min  (f; o B)(x)+ fa(x)
rER™

@ B:R™ — R™ a linear transform.
@ f1, fo are proper |.s.c convex function defined in a Hilbert space.

@ fo is differentiable on R™ with a 1//3-Lipschitz continuous gradient for some
B € (0,400)
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Background

Operator splitting methods

min  f(z) + h(x)

TEX

where f, h are proper l.s.c. convex and h is differentiable on X with a
1//-Lipschitz continuous gradient

@ Define proximal operator prox; as

prox;: X — X
z o~ argmin f(y) + 5llz — yll3,
yeX

@ Proximal forward-Backward splitting (PFBS)?

Tr1 = proxy p(zr — YVh(zy)),

for 0 < v < 28,

@ Many more other variants and related work (partial list: ISTA, FPCA,
FISTA,GFB...).

An important assumption: proxf(:z;) is an easy problem !!
'Moreau 1962; Lions-Mercier; 1979, Combettes- Wajs, 2005; FPC
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Background

Soft shrinkage

For f(z) = pll]l1,

proxs(z) = sign(z) - max(|x| — u, 0)

@ Componentwise thus efficient.
@ Generally no easy form for prox; g, (z) for non-invertible B.

o Largely used in compressive sensing and imaging sciences. Similar formula for
matrix nuclear norm minimization (restore low rank matrix) or other matrix
sparsity.
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Background

Methods on splitting form

(SPP)  maxinf {fi(2) + fo(z) + (y, Bz — 2)}

Augmented Lagrangian:
v
L¥(@,25 y) = fu(2) + fo(@) + (y, B — 2) + || B — 2|

@ Alternating direction of multiplier method (ADMM) (Glowinski et al. 75,
Gabay et al. 83)

o1 = argming LY (xz, 2F; yF)
21 = argmin, LY (2R 2;9%)
YL = yF (Bt - k)

@ Split Inexact Uzawa (SIU/BOS) Method?

A = argmin, LY (2, 2 yF) + ||z — ZkHZDz
CyFtl = CyF + (Bakt! — 2F+1)

2 ZHANG-BURGER-OSHER,2011
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Background

Methods for Primal-Dual from (PD)

(PD) minsup () + (. Bu) + fo(x)

@ Primal-dual hybrid Gradient (PDHG) Method (Zhu-Chan, 2008)

1
Y1 = argmax — ff (y) + (y, Ba*) — —|ly — "3
: 25
) 1
¢! = arg min fa(x) + <BTyk+1,fL’> + |z — kag
T 20,

e Modified PDHG (PDHGMp, Esser-Zhang-Chan,2010, equivalent to SIU on
(SPP); Pock-Cremers-Bischof-Chambolle, 2009, Chambolle-Pock,
2011(0 = 1))
Replace p* in first step of PDHG with 2p* — p*~! to get PDHGMp:

. _ 1
2Rt = arg min fa(x) + <BT <2yk — yk 1) ,x> + %Hm — ka%

o 1
yF = argmin ff (y) = (, Bzt + 5 lv - v* |13
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Connections

Background
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Legend: (P): Primal

D): Dual

AMA:

PD): Primal-Dual
SPp): Split Primal
SPp): Split Dual

Alternating Minimization Algorithm (4.2.1)

PFBS: Proximal Forward Backward Splitting (4.2.1)
ADMM: Alternating Direction Method of Multipliers (4.2.2)
PDHG: Primal Dual Hybrid Gradient (4.2)

PDHGM: Modified PDHG (4.2.3)
Bold: Well Understood Convergence Properties
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Background

First order methods in imaging sciences

@ Many efficient algorithms exist: "augmented lagrangian”, "splitting

methods”,” alternating methods”, " primal-dual”, "fixed point methods” etc.
@ Huge number of seemingly related methods.

@ Many of them requires subproblem solving involving inner-iterations, ad-hoc
parameter selections, which can not be clearly controlled in real
implementation.

@ Need for methods with simple, explicit iterations capable of solving large
scale, often non-differentiable convex models with separable structure

o Convergence analysis are mainly for the objective function, or in ergodic
sense. Most of them have sublinear convergence (O(1/N) or O(1/N?)).
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Primal dual fixed point algorithm

Primal dual fixed point methods
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Primal dual fixed point algorithm

Fixed point algorithm based on proximity operator (FP20)

For a given b € R", solve for

H(v) = (I — proxs, )(Bb+ (I — ABBT)v) for all v € R™
A
FP20 (Micchelli-Shen-Xu, 11’)
Step 1: Set vg € R™, 0 < A < 2/Amax(BBT), k € (0,1).
Step 2: Calculate v*, which is the fixed point of H, with iteration

Vg4+1 = Hﬁ(vk)

where H, = kI + (1 — k)H for k € (0,1)
Step 3: prox;,.p(b) = b— ABTv*.
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Primal dual fixed point algorithm

Solve for general problem

Solve for
¥ =argmin (f1 0 B)(z) + fa(x)
rER™
PFBS_FP2?0 (Argyriou-Micchelli-Pontil-Shen-Xu,11’)

Step 1: Set 29 € R, 0 < v < 20.
Step 2: for k=0,1,2,---

Calculate z 41 = prox, s, op(Tr — YV f2(zk)) using FP20.
end for

Note: Inner iterations are involved, no clear stopping criteria and error analysis!
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Primal dual fixed point algorithm

Primal dual fixed point algorithm

Primal-dual fixed points algorithm based on proximity operator, PDFP20.

Step 1: Set 29 € R", vg € R™, 0 < A < 1/Amaa(BBT), 0 < v < 28.
Step 2: for k=0,1,2,---

Try1/2 = Tk — YV fazk),
vy = (I — prox}fl)(Bka/g + (I — ABBT)uy),

T
Tk+1 = Tk41/2 — AB* gy,
end for

@ No inner iterations if prox f, (z) is an easy problem.
@ Extension of FP220 and PFBS.

@ Can be extended to k— average fixed point iteration
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Primal dual fixed point algorithm

Fixed point operator notion
Define 77 : R™ x R™ — R™ as

Ti(v,x) = (I — prox%fl)(B(m — 4V fa(z)) 4+ (I = ABBT)v)
and T : R"™ x R™ — R™ as

Ty(v,z) = x —yV fa(z) — ABT o Ty.

Denote T : R™ x R™ — R™ x R" as

T(v,z) = (T1(v,z), Ta(v,z)).
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Primal dual fixed point algorithm

Convergence of PDFP20

Theorem

Let A > 0, > 0. Suppose that x* is a solution of

x* =arg min (f10B)(x)+ fa(x)
reR™

if and only if there exists v* € R™ such that u* = (v*,x*) is a fixed point of T'.

Theorem

Suppose 0 < v < 2B, 0 < A <1/Auax(BBT) and k € [0,1). Let uj, = (vg, 1)
be a sequence generated by PDFP?O. Then {uy} converges to a fixed point of T
and {x}} converges to a solution of problem

x* =arg min (f10B)(z)+ fa(x)
TER™
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Primal dual fixed point algorithm

Convergence rate analysis

Condition

For0 <y <28 and 0 < A < 1/Amax(BBT), there exist 11, n2 € [0,1) such that
II — ABBT||y < n? and

lg(x) —g@W)ll2 < mallx —ylla  for all z, y € R",
where g(z) =z — YV fa(x).

Remarks

o If B has full row rank, f2 is strongly convex, this condition can be satisfied.
o As a typical example, consider fo(z) = 3| Az — b||3 with AT A full rank.
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Primal dual fixed point algorithm

Linear convergence rate

Theorem

Suppose the above condition holds true. Let uy = (v, xy) be a fixed point
iteration sequence of operator T'. Then the sequence {uy} must converge to the
unique fixed point u* = (v*, x*) € R™ x R™ of T, with x* the unique solution of
the minimization problem. Furthermore,

ch”
[EPEE A PRS 1T—0’

where ¢ = ||u; — u|

3 0= k4 (L= )y € (0,1) and 5 = max{y,, ).

o Let B=1, A\ =1, fa(x) strongly convex, then PFBS converges linearly.
o If B is full row rank, then PFP20 converges linearly.

@ Related work: linear Convergence of the ADMM methods (Luo 2012,
Deng-Yin, CAM12-52, Goldstein -O'Donoghue -Setzer,2012)
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Primal dual fixed point algorithm

Connection with other primal dual algorithms

Table : The comparison between CP (6 = 1) and PDFP20.

PDHGm/CP (0 = 1) PDFP?0

U1 = (L + 00ff) Ok + | U1 = (I + %3f1*)_1(%5k +
Form oByy) Buyy)

aper = (I +7Vf) HNaow — | 2k = 2 — WVhaa) —

BT U1 11) VBT Ui 41

Y1 = 241 — Tk Yer1 = Trs1 — YV a(Trir) —

VB 0) 41

Condition 0 < o7 < y—/ppry 0<7<2B,0<X< 3—/ppry
Relation c=Ay, T="7
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Primal dual fixed point algorithm

Connection with Splitting types of method

) 1
min [ Bally + 5|1 Az — bl

TER™
zpy1 = (ATA+vBTB)Y Y (ATb + vBT (d), — w)), (1a)
(ASB4) diy1 = pI’OX%f1 (BfEk-i—l + vk),

Vg1 = U — (dpg1 — Brpyr),
for v > 0.
@ SIU 5: (1a) is replaced by

Tht1 = Tg — 5AT(Axk — b) — 51/BT(Bxk —di + ’Uk)

e PDFP20: (1a) is replaced by

Tpy1 = 2 — AT (Axy — b) — 6vBT (Bay, — dy, +vi,) — 6°vAT ABT (d}, — Bxy,)

*Alternating split Bregman (Goldstein-Osher,08') (ADMM)

®Split Inexact Uzawa, Zhang-Burger-Osher, 10’
20/38



Primal dual fixed point algorithm

Example: Image restoration with total variation

@ Image superresolution: subsampling operator A is implemented by taking the
average of every d x d pixels and sampling the average, if a zoom-in ratio d is
desired.

@ CT reconstruction: A is parallel beam radon transform.

o Parallel MRI:
m Observation model:
bj=DFS;z+n

where b; is the vector of measured Fourier coefficients at receiver j, D is a
diagonal downsampling operator, F' is the Fourier transform, S; corresponds to
diagonal coil sensitivity mapping for receiver j and n is gaussian noise.

m Let A; = DF'S;, we can recover images x by solving

N

. 1
v =argmin ulBeli+ 230 40 b
ze]Rn ]:1
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Primal dual fixed point algorithm

Super-resolution Results

Figure : Super resolution results from 128 x 128 image to 512 x 512 image by ASB, CP,

SIU and PDFP20 corresponding to tolerance error ¢ = 10~4
Original Zooming ASB, PSNR=29.37

CP, PSNR=29.32 SIU, PSNR=29.31 PDFP20, PSNR=29.32
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Primal dual fixed point algorithm

Image superresolution

Table

: Performance comparison among ASB, CP, SIU and PDFP20 for image

superresolution. For ASB, Ny =2, v = 0.01. For CP, N; =1, 0 = 0.005. For SIU,
§ =24, v = 0.006. For PDFP20, v = 30, A = 1/6.

e =102 e=1073 e=10"1
ASB | (21, 158, 29.34)| (74, 555, 20.38)| (254, 19.14, 29.37)
CP | (46, 1.04, 28.07) | (150, 6.35, 20.24) | (481, 2037, 29.32)
SIU | (42, 1.14, 28.91) | (141, 3.78, 20.22) | (446, 12.45, 29.31)
PDFP20 | (38, 0.97, 28.98) | (128, 3.25, 29.25) | (417, 10.59,29.32)
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Primal dual fixed point algorithm

Computerized tomography (CT) reconstruction

Figure : A tomographic reconstruction example for a 128 x 128 image, with 50
projections corresponding to tolerance error ¢ = 1074

Original FBP ASB, PSNR=32.43

\

b 4

CP, PSNR=32.32 SIU, PSNR=32.23 PDFP20, PSNR=32.23
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Primal dual fixed point algorithm

Computerized Tomography (CT) reconstruction

Table : Performance evaluation comparison among ASB, CP, SIU and PDFP20 in CT

reconstruction. For ASB, CP, SIU, empirically " best” parameter sets are used.

e=1073 e=10"1 e=10""°
ASB, | (120, 2.72, 31.07) | (279, 5.87, 32.43)| (1068, 24.49, 32.45)
ASB, | (229, 4.79, 31.75) | (345, 7.24, 32.26) | (492, 10.33, 32.41)
CP | (167, 3.37, 31.80) | (267, 5.40, 32.32)| (588, 12.73, 32.45)
SIU | (655, 4.61, 31.70) | (971, 6.84, 32.23) | (1307, 9.20, 32.38)
PDFP20 | (655, 4.61, 31.70) | (971, 6.81, 32.23) | (1307, 9.15, 32.38)
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Primal dual fixed point algorithm

Parallel MRI®

Figure : In-vivo MR images acquired eight-channel head data
C0i|1 CO”Q C0i|3 C0i|4

TN

6Ji J X, Son J B and Rane S D 2007 PULSAR: a MATLAB toolbox for parallel magnetic

resonance imaging using array coils and multiple channel receivers
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Primal dual fixed point algorithm

Parallel MRI reconstruction

SENSE SPACE-RIP GRAPPA

R=2 - il

AP 0 0.001939 0.001939 0.001624
SNR 36.08 31.08 31.08 29.06
time 0.19 5.94 155.88 44.85

PDFP20

AP 0.000811 0.000823 0.000823 0.000822
SNR 39.20 39.27 39.26 39.36
time 1.81 3.72 1.87 1.84
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Extensions
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Extensions

Extensions

@ With convex constraints:

arg min  (f1 0 B)(z) + fa(x),
zeC

@ Nonconvex optimization
arg min  (f1 0 B)(z) + fa(),

where fy(x) is nonconvex (for example nonlinear least square). Application:
nonlinear inverse problem

@ Acceleration and preconditioning.
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Extensions

With extra convex constraints

arg min  (f; 0 B)(x) + fa(x),
zeC

Let Projo denote the projection onto the (closed) convex set C' and Proxy, denote
the proximal point solution.

@ Convert the problem to

arg min  (f1 0 B)(x) + fa(2),

T

. B L
where B = (I) (o B)@) = (fi0 B)) + xcl@)
e Apply PDFP20, we obtain the scheme (infeasible scheme)

V41 = ( profo )(B(.Z’k - ’nyQ(wk)) + (I - )\BBT)’Uk - )\Byk),
Y1 = (I = projo) ((z — ¥V fa(zr)) — AB v, + (1 — Nyi),
Tyt = 2k — YV f2(zk) — ABTvp1 — Ayt

o Convergence is derived directly from PDFP20.
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Extensions

Feasible iterative scheme

Ykt1 =Projo(zr — YV fa(zr) — AB vy
Vk+1 :(I - Prox%fl)(Byk“ + 'Uk)

Tp+1 =Projo(zy, — YV fa(zg) — ABTvk+1)
Equivalent iteration:

Yr+1 =Projo(xr — YV L(xk, 1))

_ Y _

Upy1 =argmax L(ygs1,v) — ﬁHv — vk||2

rp11 =Projo(xr — YV L(wg, Vk11))

where L(z,v) = fa(x) — f{(v) + (Bzx,v), v = %(Uk)
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Extensions

Convergence for feasible iterative scheme
For x € C,v € S, define

A
Ti(xz,v) = Proxéfl*(;B o Projo(x — vV fao(z) — vBTv) +v)
Y

To(z,v) = Projo(x — vV fa(z) — vBT o Ty (x,v))

T(z,v) :

@ The solution pair (z*,v*) satisfy T'(z*,v*) = (v*, z*).

0 If0<y<28,0< A< HBlTTH' then the sequence converges.

Related reference:
Krol A Li S Shen L and Xu Y 2012 Preconditioned Alternating Projection Algorithms for Maximum a
Posteriori ECT Reconstruction Inverse Problem 28 115005.
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Extensions

Example: CT reconstruction with real data

PDFP20 PDFP20C

Figure : Real CT reconstruction with nonnegative constraint (40 projections )

50 steps

100 steps
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Extensions

Example: Parallel MRI with nonnegative constraint

SNR=38.06, 20.1s SNR=39.55, 10.3s

Figure : Subsampling R =4
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Extensions

Nonconvex optimization for nonlinear inverse problem

min ||F(x) — y||3 + \|Wz|1, subject to | <z < w.
Let f(z) = [[F(x) — ylI5.
y* = Prox,, (zF — 7(Vo f(2¥) + AuWTHr)),
hkE = bF + Wik,

bl =k — shrink(hF,1/u),

( 2F T = Prox, (2% — 7(Vo f(2¥) + AuWToH 1)),

35/38



Extensions

Application for Quantitative photo-acoustic
reconstruction®

Reconstruction time: 180 s v.s 887s SplitBregman (L-BFGS for the subproblem) *

Figure : Quantitative photo-acoustic reconstruction for the absorption and (reduced)
scattering.

"H. Zhao, S. Osher and H. Zhao: Quantitative Photoacoustic Tomography, 2012
80ngoing joint work with X. Zhang, W Zhou and H. Gao 36/38



Conclusions

Summary and perspectives

@ First order methods are efficient and enjoy comparative numerical
performance, especially when the parameters are properly chosen.

@ For both ASB and CP, inexact solver such as CG method can be applied in
practice. However the choice of inner iteration is rather ad-hoc. For both SIU
and PDFP20, the iteration schemes are straightforward since only one inner
iteration is used and easy to implement in practice and can be easily,
especially when one extra constraint is present. It can be also extended to
low rank matrix or other more complex sparsity reconstruction.

@ Parameter choices for all the methods. The rules of parameter selection in
PDFP20 has some advantages.

@ The convergence and the relation of convergence rate and condition number
of the operators is clearly stated under this theoretical framework.

@ Future work: convergence for nonconvex problems; acceleration and
preconditioning; parellel and distributed, decentralized computing .
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Conclusions

o Reference P. Chen, J. Huang and X. Zhang, A Primal-Dual Fixed Point
Algorithm for Convex Separable Minimization with Applications to Image
Restoration. Inverse problems, 29 (2), 2013

o Contact: xqzhang@sjtu.edu.cn

@ Supported by China-Germany-Finland joint grant, NSFC.

Thank you for your attention !
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