Inverse Problems in Interferometric Phase Imaging

José M. Bioucas Dias

Instituto de Telecomunicações and Instituto Superior Técnico
Universidade de Lisboa
PORTUGAL

Joint work with Vladimir Katkovnik and Gonçalo Valadão

Project FCT: UID/EEA/50008/2013
Mathematics and Image Analysis (MIA), Paris, January, 2016
Phase estimation from interferometric measurements

Problem: given a set of observations $e^{j\phi_p} \equiv (\cos \phi_p, \sin \phi_p)$, determine ϕ_p (up to a constant) for $p \in \mathcal{V} \equiv \{1, \ldots, n\}$

$e^{j\phi_p}$ is 2π-periodic \Rightarrow nonlinear and ill-posed inverse problem

Continuous/discrete flavor:

\[
\phi = \mathcal{W}(\phi) + 2k\pi \quad \mathcal{W} : \mathbb{R} \rightarrow [\pi, \pi]
\]

Phase Unwrapping (PU)

Estimation of $k \in \mathbb{Z}$

Phase Denoising (PD)

Estimation of $\mathcal{W}(\phi) \in [\pi, \pi]$ (wrapped phase)
Outline

- Interferometric phase imaging. Examples
- Absolute phase estimation
- Phase unwrapping
- Interferometric phase denoising via sparse regression
- Multisource phase estimation
- Concluding remarks
Applications

- Synthetic aperture radar/sonar
- Magnetic resonance imaging
- 3D surface imaging from structured light
- High dynamic range photography
- Diffraction tomography
- Optical interferometry
- Tomographic phase microscopy
- Doppler echocardiography
- Doppler weather radar
Absolute phase estimation in InSAR (Interferometric SAR)

InSAR Problem: Estimate $\phi_2 - \phi_1$ from signals read by s_1 and s_2
InSAR Example

Interferogram $\mathcal{W}(\phi_1 - \phi_2)$

Unwrapped phase $\phi_1 - \phi_2$

Geocoded digital elevation model (DEM)

Atacama desert (Chile)

(from [Moreira et al., 13])
Magnetic resonance imaging (MRI)
High dynamic range photography

Intensity camera

Modulo camera

Unwrapped image (tone-mapped)

\[I_N = \text{mod} \ (I, 2^N) \]
3D surface imaging from structured light (from [Huang et al., 06])

Fringe images

\[\phi_{r_1} = -120^\circ \quad \phi_{r_2} = 0^\circ \quad \phi_{r_3} = 0^\circ \]

\[I_k = b_0 + b_1 \cos(\phi - \phi_{r_k}) \]
Forward problem: sensor model

\[x_i = \cos \phi + n_i \quad \quad n = (n_i, n_q) \]
\[x_q = \sin \phi + n_q \quad \quad x = (x_i, x_q) \]
\[n_i, n_q \sim \mathcal{N}(0, \sigma^2) \quad \text{independent} \]
\[\eta = \mathcal{W}(\phi) + w \]
\[\mathcal{W}(\phi), w \in [-\pi, \pi[\]

Data likelihood

\[p(x|\phi) \propto c e^{\lambda \cos(\phi - \eta)} \]
\[\eta = \arg(x) \quad \lambda = \frac{2|x|}{\sigma^2} \]
\[\hat{\phi}_{ML} = \eta + 2k\pi \]
Simulated Interferograms

Images: $\eta = \arg(e^{j\phi} + n)$

$$\text{SNR} = \frac{1}{2\sigma^2}$$
Real interferograms

MRI

InSAR

MRI

InSAR
Bayesian absolute phase estimation

Data term: \(p(\mathbf{x}|\phi) = \prod_{p \in \mathcal{V}} p(x_p|\phi_p) \)

Prior term: \(p(\phi) = \frac{1}{Z} e^{-U(\phi)} \)

Ex: pairwise interactions \(U(\phi) = \sum_{\{p, q\} \in \mathcal{E}} U_{pq} (\phi_p - \phi_q) \)

- \(\mathcal{E} = \{\{p, q\} : p \sim q\} \) clique set
- \(U_{pq} \) clique potential

- \(U_{pq} \) convex
 - Enforces smoothness
- \(U_{pq} \) non-convex
 - Enforces piecewise smoothness (discontinuity preserving)
Estimation criteria

Maximum a posteriori (MAP) \(\hat{\phi} \in \arg \max_{\phi \in \mathbb{R}^n} p(x|\phi)p(\phi) = \arg \min_{\phi \in \mathbb{R}^n} E(\phi) \)

\[
E(\phi) = \sum_{p \in \mathcal{V}} -\lambda_p \cos(\phi_p - \eta_p) + U(\phi)
\]

\(E \) is hard to optimize due to the sinusoidal data terms

Popular approaches to absolute phase estimation

- Reformulation as linear observations in non-Gaussian noise
- Interferometric phase denoising + phase unwrapping
Phase differences

Wrapped difference of wrapped phases:

\[\mathcal{W}(\eta_p - \eta_q) = (\phi_q - \phi_q) + (w_p - w_q) + 2\pi l_{p,q} \]

additive noise distributed in \([-2\pi, 2\pi]\]

\[\eta = \mathcal{W}(\phi) + w \]

wrap errors due to discontinuities, high phase rate, and noise

- In the absence of noise, \(l_{p,q} = 0 \) if \(|\phi_q - \phi_q| < \pi \) (Itoh condition)
- In most applications \(P(|\phi_q - \phi_q| \geq \pi) \) is small but positive
- \(l_{p,q} = 0 \) for \(\{p, q\} \in \mathcal{E} \) if \(\max_{\{p, q\} \in \mathcal{E}} |\phi_p - \phi_q| + \max_{\{p, q\} \in \mathcal{E}} |w_p - w_q| < \pi \)
- Number of wrap errors increases with \(\sigma \). If \(w_p \sim \mathcal{N}(0, \sigma^2) \), then

\[\mathbb{E}\left[\max_{\{p, q\} \in \mathcal{E}} |w_p - w_q| \right] \geq \mathbb{E}\left[\max_{\{p, q\} \in \mathcal{E}} (w_p - w_q) \right] = O\left(\sigma \sqrt{\log |\mathcal{E}|} \right) \]
Absolute phase estimation: linear observations in non-Gaussian noise

\[y = \mathcal{W}(D\eta) \quad D : \mathbb{R}^n \rightarrow \mathbb{R}^{2n} \text{ – discrete gradient} \]

\[w_\eta \text{ – interferometric noise} \]

\[w_\pi \text{ – wrap errors} \]

\[y = D\phi + w_\eta + w_\pi \]

Histograms of \(y - D\phi = w_\eta + w_\pi \) for a Gaussian phase surface

\[|\phi_q - \phi_q| < \pi \]

\[|\phi_q - \phi_q| \geq \pi \]

\(D_h\phi \text{ – histograms for Gaussian and mixture of Gaussians} \)
Formulation based on the linear observation model (LOM)

Minimum ℓ_p norm $0 < p < 2$ \cite{Ghiglia & Pritt, 98}

$$\min_{\phi \in \mathbb{R}^n} \| y - D\phi \|_{p,Q} \quad \text{s.t.} \quad A\phi = b$$

Regularized ℓ_1 norm (convex) \cite{Gonzalez & Jacques, 15}

$$\min_{\phi, u \in \mathbb{R}^n} \| W\phi \|_1 \quad \text{s.t.} \quad \begin{cases} \| y - D(\phi + u) \|_1 \leq \varepsilon_\pi \\ \| u \|_2 \leq \varepsilon_w \\ A\phi = b \end{cases}$$

Adaptive regularized ℓ_2 norm \cite{Kamilov et al., 15}

$$\min_{\phi \in \mathbb{R}^n} \sum_{i=1}^{n} q_i^t \| y_i - D_i\phi \|_2 + \tau \| H_i\phi \|_* \quad \text{s.t.} \quad A\phi = b$$

$D_i : \mathbb{R}^n \to \mathbb{R}^2$ – discrete gradient

$y_i = (y_{h,i}, y_{v,i})$

Nuclear norm $H_i : \mathbb{R}^n \to \mathbb{R}^4$ – discrete Hessian

Algorithms

IRLS, MM \cite{Lange & Fessler, 95}

PD \cite{Chambolle, Pock, 11}

Seq. of ADMM subproblems (q_i^t)

SALSA \cite{Afonso, B-D, Fig., 11}
Example: IRTV ([Kamilov et al., 15]) (SALSA implementation) \(n = 128 \times 128 \)

\[
\max \phi_p = 20\pi \quad \sigma = 0.5
\]

\[
\tau = 10^{-3}
\]

\[
\text{ISNR} = \frac{2n\sigma^2}{\|\hat{\phi} - \phi\|_F^2}
\]

\[
\text{ISNR} = (1.4, 1.5, -16.4) \text{ dB}
\]

\[
\tau = (10^{-4}, 10^{-2}, 10^0)
\]

1 iter (fixed weights)

\[
\text{time} = 20 \text{ s}
\]

10 iters (adaptive weights)

\[
\text{time} = 200 \text{ s}
\]
A few comments on the LOM-based phase estimation

Observation model: \(y = D\phi + w_\eta + w_\pi \)

- self-similar
- highpass
- sparse and \(\phi \)-dependent

- Regularization is challenging. Ex: Tikhonov regularization using \(||D\phi||^2 \)

\[
\hat{\phi} = \frac{1}{1 + \tau} (\phi + w + D^\dagger w_\pi)
\]

- The wrap errors \(w_\pi \) due to phase discontinuities tend to be sparse and thus well modeled by \(\ell_p \) norms with \(p \leq 1 \)

- \(\ell_1 \) norm (and \(\ell_1 \) on the gradient) yields convex programs but has limited power to cope with wrap errors

1) Denoise (filter out \(w \))

2) (Use \(\ell_p \) with \(p < 1 \)) or (\(p \geq 1 \) and detect the discontinuities)
Interferometric phase denoising + phase unwrapping

Back to MAP estimate

\[\hat{\phi} \in \arg \min_{\phi \in \mathbb{R}^n} E(\phi) \quad E(\phi) = \sum_{p \in \mathcal{V}} -\lambda_p \cos(\phi_p - \eta_p) + U(\phi) \]

Assume that: \(\phi = \{\phi_p | \phi_p = \eta_p + 2k_p \pi, p \in \mathcal{V}, k_p \in \mathbb{Z}\} \quad (\Leftrightarrow \lambda_p \to \infty) \)

Then:

\[\hat{k} \in \arg \min_{k \in \mathbb{Z}^n} E(\eta, k) = \arg \min_{k \in \mathbb{Z}^n} U(\eta, k) \]

Integer optimization

Pairwise interactions:

\[U(\eta, k) = \sum_{\{p, q\} \in \mathcal{E}} V_{pq}(k_p - k_q) \]

\[V_{pq}(k_p - k_q) = U_{pq}(\eta_p - \eta_q + 2\pi(k_p - k_q)) \]
Phase unwrapping: path following methods

Assume that \(|\phi_p - \phi_q| < \pi \) (Itoh condition)

Then \(\phi_p - \phi_q = \mathcal{W}(\phi_p - \phi_q) = \mathcal{W}(\eta_p - \eta_q) \)

PU \iff summing \(\mathcal{W}(\eta_p - \eta_q) \) over walks

\[
\phi_{p_m} = \phi_{p_0} + \sum_{i=1}^{m} \mathcal{W}(\eta_{p_i} - \eta_{p_{i-1}})
\]

Why isn’t PU a trivial problem?

- Discontinuities
- High phase rate
- Noise

\[
|\phi_p - \phi_q| \geq \pi
\]
Phase unwrapping algorithms

- $V_{pq}(\cdot) = \cdot |_{2\pi}$-quantized
 - [Flynn, 97] (exact) sequence of positive cycles on a graph
 - [Costantini, 98] (exact) min-cost flow on a graph \((|\mathcal{V}| = n, |\mathcal{E}| = 4n)\)

- $V_{pq}(\cdot) = (\cdot)^2$
 - [B-D & Leitao, 01] (exact) sequence of positive cycles on a graph \((|\mathcal{V}| = n, |\mathcal{E}| = 4n)\)
 - [Frey et al., 01] (approx) belief propagation on a 1st order MRF

- $V_{pq}(\cdot)$ convex
 - [B-D & Valadao, 07,09,11] (exact) sequence of K min cuts \((KT(n, 6n))\)

- $V_{pq}(\cdot)$ non-convex
 - [Ghiglia, 96] LPN0 (continuous relaxation)
 - [B-D & G. Valadao, 07,09,11] sequence of min cuts \((KT(n, 6n))\)
PUMA (Phase Unwrapping MAx-flow) [B-D & Valadao, 07,09,11]

Algorithm 1: PUMA

\[\phi := \eta, \quad \text{success} == \text{false} \]

while \(\text{success} == \text{false} \) **do**

\[\delta := \arg \min_{x \in \{0,1\}^{\nu}} E(\phi + 2x\pi) \]

if \(E(\phi + 2\delta\pi) < E(\phi) \) **then**

\[\phi := \phi + 2\delta\pi \]

else

\[\text{success} == \text{false} \]

return \(\phi \)

Convex priors

\[E(k) = \sum V_{pq}(k_p - k_q) \]

- A local minimum is a global minimum
- Takes at most \(K \) (range of \(k \)) iterations
- \(E \) is submodular: \(2V_{pq}(0) \leq V_{pq}(1) + V_{pq}(-1) \)
 \[\Rightarrow \) each binary optimization has the complexity of a min cut \(T(n, 6n) \)
PUMA: convex priors

Let ϕ be a smooth surface in the Itoh sense. That is $|\phi_p - \phi_q| < \pi$ for $\{p, q\} \in \mathcal{E}$. If $U_{pq}(x)$ is convex and strictly increasing of $|x|$, then

$$\phi = \eta + \hat{k} + c$$

where \hat{k} is the PUMA solution

Related algorithms

[Veksler, 99] (1-jump moves)
[Murota, 03] (steepest descent algorithm for L-convex functions)
[Ishikawa, 03] (MRFs with convex priors)
[Kolmogorov & Shioura, 05,09], [Darbon, 05] (Include unary terms)
[Ahuja, Hochbaum, Orlin, 03] (convex dual network flow problem)
Results

\[U_{pq}(\cdot) = (\cdot)^2 \]
Results

Convex priors do not preserve discontinuities

\[U_{pq}(x) = |x| \]

\[U_{pq}(x) = (x)^2 \]

\[U_{pq}(x) = \begin{cases}
 x^2 & |x| \leq \pi \\
 \pi^2 |x/\pi|^{0.5} & |x| > \pi
\end{cases} \]

\(E_{pq} \) is not graph representable
PUMA: non-convex priors

Ex: \(U_{pq}(x) = \min(x^2, \pi^2) \)

- Models discontinuities
- Models Gaussian noise

Shortcomings
- Local minima are no more global minima
- Energy contains nonsubmodular terms (NP-hard)

Proposed suboptimal solution: majorization minimization applied
PUMA binary sub-problems
Majorizing nonsubmodular terms

Majorization Minimization (MM) [Lange & Fessler, 95]

\[\begin{aligned}
\tilde{U}(k) &= U(k) \\
\tilde{U}(k + \delta) &\geq U(k + \delta)
\end{aligned} \]

\[\delta' = \arg\min_{\delta} \tilde{U}(k + \delta) \]

Non-increasing property

\[U(k + \delta') \leq U(k) \]

Other suboptimal approaches

- Quadratic Pseudo Boolean Optimization (Probing [Boros et al., 2006], Improving [Rother et al., 2007])
- Sequencial Tree-Re Reweighted Message Passing (TRW-S) [Kolmogorov, 2006]
- Dual decomposition (DD) [Komodakis et al., 2011]
- DD + Augmented Lagrangian [Martins et al., 2015]
Results with PUMA (MM) \((n = 128 \times 128, 2^{nd} \text{ order neighborhood, } p = 0.2, th = 0.1)\)
PUMA/IRTV in a HDRP example \(\phi \in [0, \rho] \quad n = 256 \times 256 \)

PUMA: \(1^{st} \) order neighborhood, \(p = 0.2 \quad th = 0.1 \)

\[
\phi \mod 2\pi \quad (\rho = 6) \quad \phi \mod 2\pi \quad (\rho = 8)
\]

\[
\begin{array}{c|c|c|c}
\rho & \text{SNR (dB)} & \text{PUMA} & \text{IRTV} \\
\hline
4 & \infty & \infty & \\
5 & \infty & 25.65 & \\
6 & 25.2 & 19.98 & \\
7 & 17.34 & 16.09 & \\
8 & 13.68 & 0.92 & \\
9 & 1.82 & 2.17 & \\
\hline
\text{T(sec)} & 1 & 350 & \\
\end{array}
\]

[Kamilov et al.,15]
Degradation mechanisms: noise + “phase discontinuities”

“Phase wraps”

\[\frac{|\{ p : |\hat{\phi}_p - \phi_p| \geq \pi \}|}{n} \]

\(\sigma = 0.4\)

\(\sigma = 0.3\)

\(\sigma = 0.6\)

\(\sigma = 1.0\)
Interferometric phase denoising

objective: estimate $\mathcal{W}[\phi]$ from η

phase modulo 2π

original interf. image $\phi_{2\pi} \equiv \mathcal{W}[\phi]$

observed interf. image η
State-of-the-art in interferometric phase estimation

- Unwrap (first) + denoise
 - CAPE [Valadao & B-D, 09]: unwrap with PUMA and then minimize $E(\phi_\pi, k)$ w.r.t. ϕ_π

- Parametric model for ϕ
 - PEARLS [B-D et al., 2008]: local first order approximation for phase and adaptive window selection (ICI [Katkovnik et al., 06])

- Denoise x
 - WFT [Kemao, 2007]: windowed Fourier thresholding

- Non-local means filtering
 - NL-InSAR/NL-SAR [Deledalle, et al., 11, 15]: patch similarity criterion suitable to SAR images and a weighted maximum likelihood estimation interferogram with weights derived in a data-driven way.
Dictionary based interferometric phase estimation

Motivation

- sparse and redundant representations are at the heart of many state-of-the-art applications namely in image restoration
- phase images exhibit a high level of self-similarity. So they admit sparse representations on suitable dictionaries.

Challenges: the observation mechanism linking the observed phase \(\eta \) with the interferometric phase \(\phi_{2\pi} \) is nonlinear.

Observation: the fact that the amplitude and phase images \(a \) and \(\phi \) are self-similar, implies that \(ae^{i\phi} \) is self-similar.

Our approach: learn sparse representations for \(ae^{i\phi} \) and from them infer \(a \) and \(\phi \).
Interferometric Phase Estimation via Sparse Regression

Complex valued image

\[x_i = z_i + n_i \in \mathbb{C}^m \]

original vector

noise vector

observed vector

\[D \equiv [d_1, \ldots, d_k] \in \mathbb{C}^{m \times k} \]
dictionary with respect to which \(z_i \) admits a sparse representation

\[\hat{z}_i = D\hat{\alpha}_i \quad \min_{\alpha} \| \alpha \|_0, \quad \text{s.t.:} \quad \| D\alpha - x_i \|_2^2 \leq \delta \]
estimation error \(\varepsilon_i = \hat{x}_i - x_i \)
i.i.d. noise \(\Rightarrow \)

\[\frac{\| \varepsilon_i \|_2^2}{\| n_i \|_2^2} \approx \frac{p}{m} \quad p = \| \hat{\alpha} \|_0 \]
Interferometric phase estimation

\[P_k \rightarrow \text{the set of patches containing the pixel } k \]

\[\hat{z}_i = z_i + \varepsilon_i, \quad i \in P_k \]

the set of estimates of \(z_k \) obtained from patches \(i \in P_k \)

Maximum likelihood estimate of \(z_i = ae^{j\phi} \)

(assume that \(\varepsilon_i = [\varepsilon_1, \ldots, \varepsilon_p] \) is \(\mathcal{N}(0, C) \))

\[\hat{\phi}_{2\pi} = \arg \left(\sum_{j=1}^{q} \hat{z}_j \gamma_j \right) \]

\[\hat{a} = \frac{\left| \sum_{j=1}^{q} \hat{z}_j \gamma_j \right|}{\left(\sum_{j=1}^{q} \gamma_j \right)} \]

where \(\gamma_j := \sum_{k=1}^{q} [C^{-1}]_{jk} \).

In practice \(\gamma_j \) is very hard to compute and we take \(\gamma_j = c^{te} \).
Dictionary learning

Find a dictionary representing accurately the image patches with the smallest possible number of atoms.

formalization under the regularization framework

\[
\min_{D \in \mathcal{C}, A} L(D, A) \quad L(D, A) = \frac{1}{2} \| X - DA \|_F^2 + \lambda \| A \|_1,
\]

where \(\mathcal{C} := \{ D \in \mathbb{C}^{m \times k} : \| d_j^H d_j \| \leq 1, j = 1, \ldots, k \} \)

and \(X = [x_1, \ldots, x_{Np}] \) and \(A = [\alpha_1, \ldots, \alpha_{Np}] \)

DL Algorithm: alternating proximal minimization (APM)

\[
\begin{align*}
D^{k+1} & \in \arg \min_{D \in \mathcal{C}} L(D, A^k) + \lambda \| D - D^k \|_F^2, \\
A^{k+1} & \in \arg \min_A L(D^{k+1}, A) + \lambda \| A - A^k \|_F^2,
\end{align*}
\]

Convergence (based on the Kurdyka-Lojasiewicz inequality)
[Attouch et al. 10], [Xu, Yin, 2012]
Dictionary learning

drawback: alternating proximal minimization takes too long (order of 10^4 sec) in a typical image scenario ($N_p = 100000$, $m = 100$, and $k = 200$)

Online Dictionary Learning (ODL): [Mairal et al. 2010]

Select randomly $x^t \equiv [x^t_i \ i = 1, \ldots \eta]$ from z

(Sparse coding: BPDA)

$\alpha^t := \arg \min_{\alpha \in C^{k \times \eta}} (1/2) \| x^t - D\alpha \|_F^2 + \lambda \|\alpha\|_1$

$\min_{D \in C} \frac{1}{S_t} \sum_{i=1}^{t} w_i \left\{ (1/2) \| x^i - D\alpha^i \|_F^2 + \lambda \|\alpha^i\|_1 \right\}$

D^t converges to the stationary points of

$(1/2) \|X - DA\|_F^2 + \lambda \|A\|_1$, $D \in C$

Computational complexity: $O(km^2 + \eta km)$
The proposed denoising algorithm

SpInPHASE [Hongxing, B-D, Katkovnik, 14]

Input: $x \in \mathbb{C}^{N_1 \times N_2}$
Output: $\hat{\phi} \in \mathbb{R}^{N_1 \times N_2}$

Begin

- $x_i \leftarrow M_i x$, $i = \ldots, N_p$
 (extract patches)
- $D \leftarrow DL(x_i, i = 1, \ldots, N_p)$
 (learn the dictionary)
- $\alpha_i \leftarrow OMP(D, x_i, i = 1, \ldots, N_p)$
 (sparse coding)
- $\hat{z}_i \leftarrow D \alpha_i$, $i = 1, \ldots, N_p$
 (patch estimate)
- $\hat{x} \leftarrow \text{compose}(\hat{z}_i, i = 1, \ldots, N_p)$
 (patch compose)
- $\hat{\phi}_{2\pi} \leftarrow \arg(\hat{x})$
 (interferometric phase estimate)
- $\hat{\phi} \leftarrow \text{PUMA}(\hat{\phi}_{2\pi})$
 (phase unwrapping)

End
DL: Example (truncated Gaussian - $\sigma = 0.3$) $\sqrt{m} = 12, k = 256$

RMSE := $\frac{\|\mathcal{W}(\hat{\phi}_{2\pi} - \phi_{2\pi})\|_F}{\sqrt{N} \mathbf{4N}\pi^2}$

PSNR := $\frac{\|\mathcal{W}(\hat{\phi}_{2\pi} - \phi_{2\pi})\|_F^2}{\|\mathcal{W}(\hat{\phi}_{2\pi} - \phi_{2\pi})\|_F^2}$

$\frac{\|\mathcal{W}(\eta - \phi_{2\pi})\|_F^2}{\|\mathcal{W}(\hat{\phi}_{2\pi} - \phi_{2\pi})\|_F^2} = 20 \simeq \frac{1}{2} \frac{m}{\bar{p}}$

RMSE = 0.048 (rad)
PSNR = 42.35 dB

time (ODL) = 71 sec

time (APS) = 7182 sec
DL: Online (ODL) Versus Batch (APM)

\[\sqrt{m} = 12, \, k = 512 \]
Restored Images

\(\sigma = 0.5 \)

\(\sigma = 1.0 \)

\(\sigma = 1.5 \)

RMSE = 0.052

RMSE = 0.108

RMSE = 0.174
Results
Dictionary learned from 6 images (shown before)

\[\sqrt{m} = 12, \ k = 512 \]
Comparisons with competitors

<table>
<thead>
<tr>
<th>Surf.</th>
<th>σ</th>
<th>PSNR (dB)</th>
<th>W</th>
<th>PSNR_a (dB)</th>
<th>W</th>
<th>NELP</th>
<th>W</th>
<th>TIME (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sp(ld)</td>
<td>Sp(pd)</td>
<td>Sp(ld)</td>
<td>Sp(pd)</td>
<td>Sp(ld)</td>
<td>Sp(pd)</td>
<td>Sp(ld)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sp(id)</td>
<td>Sp(pd)</td>
<td>Sp(id)</td>
<td>Sp(pd)</td>
<td>Sp(id)</td>
<td>Sp(pd)</td>
<td>Sp(id)</td>
</tr>
<tr>
<td>Trunc.</td>
<td>0.3</td>
<td>42.51</td>
<td>42.88</td>
<td>40.29</td>
<td>42.51</td>
<td>42.88</td>
<td>40.29</td>
<td>0</td>
</tr>
<tr>
<td>Gauss.</td>
<td>0.5</td>
<td>39.63</td>
<td>39.95</td>
<td>36.71</td>
<td>39.63</td>
<td>39.95</td>
<td>36.71</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>35.69</td>
<td>36.96</td>
<td>34.26</td>
<td>35.85</td>
<td>36.98</td>
<td>34.37</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>33.52</td>
<td>36.04</td>
<td>32.79</td>
<td>33.52</td>
<td>36.23</td>
<td>32.79</td>
<td>0</td>
</tr>
<tr>
<td>Sinu.</td>
<td>0.3</td>
<td>48.94</td>
<td>47.77</td>
<td>35.76</td>
<td>48.94</td>
<td>47.77</td>
<td>35.76</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>41.91</td>
<td>43.50</td>
<td>31.48</td>
<td>41.91</td>
<td>43.50</td>
<td>31.48</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>38.44</td>
<td>41.20</td>
<td>28.90</td>
<td>38.44</td>
<td>41.20</td>
<td>28.90</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>36.42</td>
<td>39.30</td>
<td>26.36</td>
<td>36.42</td>
<td>39.30</td>
<td>26.36</td>
<td>0</td>
</tr>
<tr>
<td>Sinu.</td>
<td>0.3</td>
<td>44.45</td>
<td>42.29</td>
<td>35.91</td>
<td>44.45</td>
<td>42.29</td>
<td>35.91</td>
<td>0</td>
</tr>
<tr>
<td>discon.</td>
<td>0.5</td>
<td>39.41</td>
<td>38.61</td>
<td>31.86</td>
<td>39.41</td>
<td>38.61</td>
<td>31.86</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>37.09</td>
<td>35.95</td>
<td>29.86</td>
<td>37.09</td>
<td>35.95</td>
<td>29.95</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>34.17</td>
<td>34.00</td>
<td>27.64</td>
<td>34.17</td>
<td>34.00</td>
<td>27.71</td>
<td>0</td>
</tr>
<tr>
<td>Mount.</td>
<td>0.3</td>
<td>40.66</td>
<td>38.90</td>
<td>40.00</td>
<td>40.66</td>
<td>38.90</td>
<td>40.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>37.20</td>
<td>35.66</td>
<td>36.55</td>
<td>37.20</td>
<td>35.66</td>
<td>36.55</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>34.35</td>
<td>33.29</td>
<td>34.17</td>
<td>34.35</td>
<td>33.29</td>
<td>34.17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>32.55</td>
<td>31.66</td>
<td>32.31</td>
<td>32.70</td>
<td>31.79</td>
<td>32.31</td>
<td>1</td>
</tr>
<tr>
<td>Shear</td>
<td>0.3</td>
<td>49.36</td>
<td>47.01</td>
<td>40.67</td>
<td>49.36</td>
<td>47.01</td>
<td>40.67</td>
<td>0</td>
</tr>
<tr>
<td>plane</td>
<td>0.5</td>
<td>42.95</td>
<td>44.05</td>
<td>37.07</td>
<td>42.95</td>
<td>44.05</td>
<td>37.07</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>38.39</td>
<td>39.58</td>
<td>34.13</td>
<td>38.39</td>
<td>39.58</td>
<td>34.13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>33.53</td>
<td>38.72</td>
<td>33.24</td>
<td>33.53</td>
<td>38.72</td>
<td>33.24</td>
<td>0</td>
</tr>
<tr>
<td>Long's</td>
<td>0.3</td>
<td>35.49</td>
<td>35.68</td>
<td>35.40</td>
<td>35.51</td>
<td>35.69</td>
<td>35.41</td>
<td>28</td>
</tr>
<tr>
<td>Peak</td>
<td>0.5</td>
<td>33.05</td>
<td>33.19</td>
<td>32.89</td>
<td>33.08</td>
<td>33.24</td>
<td>32.93</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>31.32</td>
<td>31.46</td>
<td>31.19</td>
<td>31.46</td>
<td>31.53</td>
<td>31.28</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>29.97</td>
<td>30.17</td>
<td>29.90</td>
<td>30.09</td>
<td>30.26</td>
<td>29.99</td>
<td>34</td>
</tr>
</tbody>
</table>
Concluding remarks

- Overview absolute phase estimation, from interferometric measurements, based a linear observation formulation and on phase unwarppping
- The need for interferometric phase estimation
- SpInPhase: Interferometric phase denoising via sparse coding in the complex domain
 - Exploits the self-similarity of the complex valued images
 - State-of-the-art results, namely regarding the preservation of discontinuities coded in the interferometric phase $e^{i\phi}$
- Current research directions
 - Multisource phase estimation
 - Denoising via sparse coding in the complex domain via high-order SVD and nonlocal block matching techniques
 - Phase retrieval with patch-oriented dictionaries
References

References

• V. Kolmogorov and A. Shioura. "New algorithms for convex cost tension problem with application to computer vision." *Discrete Optimization* vol. 6, no. 4, pp., 378-393, 2009.

Multi-source absolute phase estimation

Ex: different frequencies
\[p_1(z_i|\phi) \propto c_i e^{\lambda_i \cos(f_i \phi - \eta_i)} \]

Two sources. Ex:
\[f_1 = 1, \quad f_2 = \frac{u}{v} \quad u, v \in \mathbb{N} \quad \text{primes} \]
\[d(\phi) = -\lambda_1 \cos(\phi - \eta_1) - \lambda_2 \cos(f_2 \phi - \eta_2) \]
\[d(\phi + 2\pi v) = d(\phi) \Rightarrow 2v\pi\text{-periodic} \]

LOM formulation
\[\mathbf{y} = \mathbf{D}\phi + \mathbf{w}_\eta + \mathbf{w}_\pi \]
\[\eta \in \arg \min_{[-v\pi,v\pi]^n} \sum_{p\in\mathcal{V}} d_p(\phi) \]
\[\mathbf{y} = \mathcal{W}_v(\mathbf{D}\eta) \]

Integer formulation: unwrap phase images with range larger than \(2v\pi\)

\[\min_{k \in \mathbb{Z}^n} \sum_{\{p,q\} \in \mathcal{E}} V_{pq}(k_p - k_q) \]
\[V_{pq}(k_p - k_q) = U_{pq}(\eta_p - \eta_q + 2\pi v(k_p - k_q)) \]

Noise is an issue
Example: two sources, image man

\[W_\pi(x_1) \]

\[W_\pi(x_2) \]

\[\rho = 10\pi, \quad f_1 = 1, f_2 = \frac{3}{4} \Rightarrow \nu = 4 \]

SNR = 58 dB
\[\eta = \arg \min_{\phi} -\lambda_1 \cos(\phi - \eta_1) - \lambda_2 \cos(f_2\phi - \eta_2) \]

\[f_2 = \frac{2}{3} \]

phase range = 60\pi

SNR = 5 dB
$u/v = 2/3$

range = 60π

η_1

v-PU, $iter = 2$

v-PU, $iter = 4$

v-PU, $iter = 6$

v-PU, $iter = 8$

v-PU, $iter = 12$

$T = 2$ sec
v-Interferometric Phase Estimation via DL

Approach

\[
\min_{\phi \in [-\pi v, \pi v]} - \log p(z|\phi) + \tau_1 \| e^{j \frac{\phi}{v}} - L(DA) \|_F^2 + \tau_2 \| A \|_{1,1}
\]

Example

\[
u/v = 2/3 \quad \text{range} = 60\pi
\]

\[\hat{\phi}_{2\pi v} \ (\text{iter -1 })\]

\[\hat{\phi}_{2\pi v} \ (\text{iter -2 })\]

\[\hat{\phi}_{2\pi v} \ (\text{iter -3 })\]

RMSE \ (\phi_{2\pi v} = 0.86) \quad \text{RMSE} \ (\phi_{2\pi v} = 0.27) \quad \text{RMSE} \ (\phi_{2\pi v} = 0.19)