Geodesic shooting on shape spaces

Alain Trouvé

CMLA, Ecole Normale Supérieure de Cachan

GDR MIA
Paris, November 21 2014
Outline

Riemannian manifolds (finite dimensional)

Spaces spaces (intrinsic metrics)

Diffeomorphic transport and homogeneous shape spaces

Geodesic shooting on homogeneous shape spaces
Riemannian geometry

The classical apparatus of (finite dimensional) *riemannian geometry* starts with the definition of a **metric** $\langle \ , \rangle_m$ on the tangent bundle.

Geodesics and energy

Find the path $t \rightarrow \gamma(t)$ from m_0 to m_1 minimizing the energy

$$I(\gamma) \triangleq \int_0^1 \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_{\gamma(t)} dt$$

Critical paths from I are **geodesics**

![Diagram of a path γ(t) from m_0 to m_1](image)
Geodesic equation

\[\frac{dl}{ds}(\gamma) = -\int_0^T \langle \frac{D}{dt}\dot{\gamma}, \frac{\partial}{\partial s}\gamma \rangle \gamma(t) dt \]

Figure: Variations around \(\gamma(t) \)

\[\delta l \equiv 0 \text{ for } \frac{D}{dt}\dot{\gamma} \equiv 0 \]

where \(\frac{D}{dt} = \nabla_{\dot{\gamma}} \) is the covariant derivative along \(\gamma \)

Second order EDO given \(\gamma(0), \dot{\gamma}(0) \).
Exponential Mapping and Geodesic Shooting

This leads to the definition of the exponential mapping

$$\text{Exp}_{\gamma(0)} : T_{\gamma(0)}M \to M.$$

Starts at $m_0 = \gamma(0)$, chooses the direction $\gamma'(0) \in: T_{\gamma(0)}M$ and shoots along the geodesic to $m_1 = \gamma(1)$.

Figure: Exponential mapping and normal coordinates

Key component of many interesting problems: Generative models, Karcher means, parallel transport via Jacobi fields, etc.
Lagrangian Point of View

(In local coordinates)

► Constrained minimization problem

$$\int_0^1 L(q(t), \dot{q}(t)) \, dt$$

with Lagrangian $L(q, \dot{q}) = \frac{1}{2} |\dot{q}|_q^2 = \frac{1}{2} (L_q \dot{q} |\dot{q})$ and (q_0, q_1) fixed

L_q codes the metric. L_q symmetric positive definite.

► Euler-Lagrange equation

$$\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = 0$$
From Lagrangian to Hamiltonian Variables

- Change \((q, \dot{q})\) (position, velocity) \(\rightarrow\) \((q, p)\) (position, momentum) with
 \[p = \frac{\partial L}{\partial \dot{q}} = L_q \dot{q} \]

- Euler-Lagrange equation is equivalent to the **Hamiltonian** equations:
 \[
 \begin{align*}
 \dot{q} &= \frac{\partial H}{\partial p}(q, p) \\
 \dot{p} &= -\frac{\partial H}{\partial q}(q, p)
 \end{align*}
 \]
 where (Pontryagin Maximum Principle)

 \[H(q, p) = \max_u (p|u) - L(q, u) = \frac{1}{2}(K_q p|p) \]

 \(K_q = L_q^{-1}\) define the co-metric.

Note: \(\partial_q H\) induces the derivative of \(K_q\) with respect to \(q\).
Outline

Riemannian manifolds (finite dimensional)

Spaces spaces (intrinsic metrics)

Diffeomorphic transport and homogeneous shape spaces

Geodesic shooting on homogeneous shape spaces
The *ideal* mathematical setting: A smart space Q of smooth mappings from a smooth manifold S to \mathbb{R}^d.

Basic spaces are $\text{Emb}(S, \mathbb{R}^d)$, $\text{Imm}(S, \mathbb{R}^d)$ the space of smooth (say C^∞) embeddings or immersions from S to \mathbb{R}^d. May introduce a finite regularity $k \in \mathbb{N}^*$ and speak about $\text{Emb}^k(S, \mathbb{R}^d)$ and $\text{Imm}^k(S, \mathbb{R}^d)$.

$S = S^1$ for close curves, $S = S^2$ for close surfaces homeomorphic to the sphere

Nice since open subset of $C^\infty(S, \mathbb{R})$. For $k > 0$, open subset of a Banach space.
Case of curves: S^1 is the unit circle.

- L^2 metric: $h, h' \in T_q C^\infty(S, \mathbb{R}^d)$
 $$\langle h, h' \rangle_q = \int \langle h, h' \rangle |\partial_\theta q| d\theta = \int_{S^1} \langle h, h' \rangle ds.$$

- Extensions in Michor and Mumford (06)

- H^1 type metric:
 $$\langle h, h' \rangle_q = \int_{S^1} \langle (D_s h)^\perp, (D_s h')^\perp \rangle + b^2 \langle (D_s h)^\top, (D_s h')^\top \rangle ds$$

 where $D_s = \partial_\theta / |\partial_\theta q|$

 - Younes’s elastic metric (Younes ’98, $b = 1$, $d = 2$), Joshi Klassen Srivastava Jermyn ‘07 for $b = 1/2$ and $d \geq 2$ (SRVT trick).
Parametrization invariance: \(\psi \in \text{Diff}(S) \)

\[
\langle h \circ \psi, h' \circ \psi \rangle_{q \circ \psi} = \langle h, h' \rangle_q.
\]

- Sobolev metrics (Michor Mumford '07; Charpiat Keriven Faugeras '07; Sundaramoorthi Yezzi Mennuci '07): \(a_0 > 0 \), \(a_n > 0 \)

\[
\langle h, h' \rangle_q = \int_{S^1} \sum_{i=0}^{n} a_i \langle D_s^i h, D_s h' \rangle ds.
\]

Again, parameterization invariant metric.

- Extension for surfaces (\(\dim(S) \geq 2 \)) in Bauer Harms Michor '11.
Summary and questions

- Many possible metrics on the preshape spaces Q (how to choose)
- Ends up with a smooth parametrization invariant metric on a smooth preshape space Q and a riemannian geodesic distance.

Questions: Minimal: Local existence of geodesic equations and smoothness for smooth data? More

1. Existence of global solution (in time) of the geodesic equation (geodesically complete metric space)?
2. Existence of a minimising geodesic between any two points (geodesic metric space)?
3. Completeness of the space for the geodesic distance (complete metric space)?

1-2-3 equivalents on finite dimensional riemannian manifold (Hopf-Rinow thm)
Summary and questions

- Many possible metrics on the preshape spaces \mathcal{Q} (how to choose)
- Ends up with a smooth parametrization invariant metric on a smooth preshape space \mathcal{Q} and a riemannian geodesic distance.

Questions: Minimal: Local existence of geodesic equations and smoothness for smooth data? More

1. Existence of global solution (in time) of the geodesic equation (geodesically complete metric space)?
2. Existence of a minimising geodesic between any two points (geodesic metric space)?
3. Completeness of the space for the geodesic distance (complete metric space)?

1-2-3 equivalents on finite dimensional riemannian manifold (Hopf-Rinow thm)
Summary and questions

- Many possible metrics on the preshape spaces Q (how to choose)
- Ends up with a smooth parametrization invariant metric on a smooth preshape space Q and a riemmanian geodesic distance.

Questions: Minimal: Local existence of geodesic equations and smoothness for smooth data? More

1. Existence of global solution (in time) of the geodesic equation (geodesically complete metric space)?
2. Existence of a minimising geodesic between any two points (geodesic metric space)?
3. Completeness of the space for the geodesic distance (complete metric space)?

1-2-3 equivalents on finite dimensional riemannian manifold (Hopf-Rinow thm)
Few answers

- (Local solution): Basically, for Sobolev norm of order n greater than 1, local existence of solutions of the geodesic equation if the initial data has enough regularity (*Bauer Harms Michor ’11*):

 $$k > \frac{\dim(S)}{2} + 2n + 1$$

- (Geodesic completeness): Global existence has been proved recently for $S = S^1$, $d = 2$ (planar shapes) and $n = 2$ (*Bruveris Michor Mumford ’14*). Wrong for the order 1 Sobolev metric. Mostly unkown for the other cases.

- (Geodesic metric spaces): Widely open

- (Complete metric space): No for smooth mappings (weak metric). Seems to be open for $\text{Imm}^k(S, \mathbb{R}^d)$ or $\text{Emb}^k(S, \mathbb{R}^d)$ and order k Sobolev metric.
Why there is almost no free lunch

Back to the Hamiltonian point of view. The metric can be written \((L_q h| h)\) with \(L_h\) an elliptic symmetric definite differential operator.

\[
H(q, p) = \frac{1}{2}(K_q p|q)
\]

where \(K_q = L_q^{-1}\) is a pseudo-differential operator with a really intricate dependency with the pre-shape \(q\).
Towards shape shapes: removing parametrisation

Diff(S) as a nuisance parameter

- **Diff(S):** the diffeomorphism group on \(S \) (reparametrization).
- **Canonical shape spaces:** \(\text{Emb}(S, \mathbb{R}^d)/\text{Diff}(S) \) or \(\text{Imm}(S, \mathbb{R}^d)/\text{Diff}(S) \)

\[
[q] = \{ q \circ \psi \mid \psi \in \text{Diff}(S) \}
\]

- **Structure of manifold** for \(\text{Emb}(S, \mathbb{R}^d)/\text{Diff}(S) \) and \(\text{Imm}(S, \mathbb{R}^d)/\text{Diff}(S) \) (orbifold)
- **Induced geodesic distance**

\[
d_{\mathcal{Q}/\text{Diff}(S)}([q_0], [q_1]) = \inf \{ d_{\mathcal{Q}}(q_0, q_1 \circ \psi) \mid \psi \in \text{Diff}(S) \}
\]
Questions: Given to two curves q_0 and q_{targ} representing two shapes $[q_0]$ and $[q_{\text{targ}}]$

- Existence of an horizontal geodesic path $t \mapsto q_t \in Q$ emanating from q_0 and of a reparametrisation path $t \mapsto \psi_t \in \text{Diff}(S)$ such that $q_{\text{targ}} = q_1 \circ \psi_1$?

No available shooting algorithms for parametrized curves or surfaces, only mainly path straightening algorithms or DP algorithms that alternate between q and ψ.

Usually, no guarantee of existence of an optimal diffeomorphic parametrisation ψ_1 (T. Younes ’97).
Outline

Riemannian manifolds (finite dimensional)

Spaces spaces (intrinsic metrics)

Diffeomorphic transport and homogeneous shape spaces

Geodesic shooting on homogeneous shape spaces
Shape spaces as homogeneous spaces

Idea #1:
D’Arcy Thomspson and Grenander. Put the emphasis on the left action of the group of diffeomorphisms on the embedding space \mathbb{R}^d and consider homogeneous spaces $M = G.m_0$:

$$G \times M \rightarrow M$$

Diffeomorphisms can act on almost everything (changes of coordinates)!

Idea #2:
Put the metric on the group G (right invariance). More simple. Just need to specify the metric at the identity.
Idea #3:
Build the metric on M from the metric on G:

1. If G has a G (right)-equivariant metric:

$$d_G(g_0 g, g_0 g') = d_G(g, g')$$ for any $g_0 \in G$

then M inherits a quotient metric

$$d_M(m_0, m_1) = \inf \{ d_G(Id, g) \mid gm_0 = m_1 \in G \}$$

2. The geodesic on Gm_0 can be lifted to a geodesic in G (horizontal lift).
Construction of right-invariant metrics

Start from a Hilbert space $V \hookrightarrow C^1_0(\mathbb{R}^d, \mathbb{R}^d)$.

1. Integrate time dependent vector fields $v(.) = (v(t))_{t \in [0,1]}$:

$$\dot{g} = v \circ g, \quad g(0) = \text{Id}.$$

2. Note $g^v(.)$ the solution and

$$G_V \doteq \{ g^v(1) \mid \int_0^1 |v(t)|^2_V dt < \infty \}.$$

$$d_{G_V}(g_0, g_1) \doteq \left(\inf \{ \int_0^1 |v(t)|^2_V dt < \infty \mid g_1 = g^v(1) \circ g_0 \} \right)^{1/2}$$
Basic properties

Thm (T.)

If $V \rightarrow C^1_0(\mathbb{R}^d, \mathbb{R}^d)$ then

1. G_V is a group of C^1 diffeomorphisms on \mathbb{R}^d.
2. G_V is a complete metric space for d_G
3. we have existence of a minimizing geodesic between any two
group elements g_0 and g_1 (geodesic metric space)

Note: G_V is parametrized by V which is not a Lie algebra. Usually G_V and d_G is not explicite.

Thm (Bruveris, Vialard ’14)

If $V = H^k(\mathbb{R}^d, \mathbb{R}^d)$ with $k > \frac{d}{2} + 1$ then $G_V = \text{Diff}^k(\mathbb{R}^d)$ and G_V is also
geodesically complete
Finite dimensional approximations

- Key induction property for homogeneous shape spaces under the same group G

Let $G \times M' \to M'$ and $G \times M \to M$ be defining two homogeneous shape spaces and assume that $\pi : M' \to M$ is a onto mapping such that

$$\pi(gm') = g\pi(m').$$

Then

$$d_M(m_0, m_1) = d_{M'}(\pi^{-1}(m_0), \pi^{-1}(m_1)).$$

Consequence: if $M_n = \lim \uparrow M_\infty$ we can approximate geodesics on M_∞ from geodesic on the finite dimensional approximations M_n.

Basis for landmarks based approximations of many shape spaces of submanifolds.
Outline

Riemannian manifolds (finite dimensional)

Spaces spaces (intrinsic metrics)

Diffeomorphic transport and homogeneous shape spaces

Geodesic shooting on homogeneous shape spaces
Shooting on homogeneous shape space

For \((q, v) \mapsto \xi_q(v)\) (infinitesimal transport) we end up with an optimal control problem

\[
\begin{align*}
\min & \int_0^1 (Lv|v)dt \\
\text{subject to} & \\
q(0), q(1) & \text{fixed, } \dot{q} = \xi_q(v)
\end{align*}
\]

The solution can be written in hamiltonian form: with

\[
H(q, p, v) = (p|\xi_q(v)) - \frac{1}{2}(Lv|v).
\]

Reduction from PMP:

\[
H(q, p) = \frac{1}{2}(K\xi_q^*(p)|\xi_q^*(p))
\]

Smooth as soon as \((q, v) \mapsto \xi_q(v)\) **is smooth.** No metric derivative!
(Arguillière, Trelat, T., Younes’14)
Why shooting is good

Let consider a generic optimization problem arising from shooting:
Let $z = (q, p)^T$, $F = (\partial_p H, -\partial_q H)^T$ (R and U smooth enough)

\[
\begin{align*}
\min_{z(0)} & \quad R(z(0)) + U(z(1)) \\
\text{subject to} & \\
Cz(0) &= 0, \quad \dot{z} = F(z)
\end{align*}
\]

Gradient scheme through a forward-backward algorithm:

- Given $z_n(0)$, **shoot forward** ($\dot{z} = F(z)$) to get $z_n(1)$.
- Set $\eta_n(1) + dU(z_n(1)) = 0$ and **integrate backward** the adjoint evolution until time 0

\[
\dot{\eta} = -dF^*(z_n)\eta
\]

The gradient descent direction D_n is given as

\[
D_n = C^*\lambda - \nabla R(z_n(0)) + \eta_n(0)
\]
An extremely usefull remark (S. Arguillère ’14)

If $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$, we have

$$F = J \nabla H$$

so that

$$dF = J d(\nabla H) = J \text{Hess}(H)$$

Since the hessian is symmetric we get

$$dF^* = J dF$$

Hence

$$dF(z)^* \eta = J \frac{d}{d\varepsilon}(F(z + \varepsilon \eta))|_{\varepsilon=0} J$$

so that we get the backward evolution at the same cost than the forward via a finite difference scheme.
Shooting the painted bunny (fixed template)

Figure: Shooting from fixed template (painted bunny)

(Charlier, Charon, T.'14)
Shooting the bunny...
Shooting the bunny...
Shooting the bunny...
Shooting the bunny...
Thank You.