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Sparse Regularization

Quadratic Regularization

Setting

Let U, V be Hilbert spaces and F : U → V bounded linear.
Consider the approximative solution of the operator equation

F (u) = v

for given v ∈ V .

If the operator equation is ill-posed (e.g. if F : U → V is compact),
regularization is necessary: search for uα ∈ U minimizing

T (u;α, v) := ‖Fu − v‖2 + αR(u)

with regularization functional R : U → R≥0 and regularization
term α > 0.
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Sparse Regularization

Quadratic Regularization

Quadratic Regularization

Consider
T (u;α, v) :=

∥∥Fu − v
∥∥2
V

+ α
∥∥u
∥∥2
U
.

Original setting by Tikhonov: U = W k,2(Ω).
Regularization term enforces smoothness (differentiability) of the
approximate solutions.

In some applications (signal / image processing), smoothness no
realistic assumption / no important property.

Recent idea: instead of smoothness, try to enforce sparsity with
respect to a given basis / frame / subset.
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Sparse Regularization

Quadratic Regularization

Sparsity

Let (φi )i∈I ⊂ U be some bounded family. Find

u =
∑
i∈I

uiφi ∈ U

with
Fu ≈ v

such that (weak sense)

#
{

i ∈ I : |ui | � 0
}

is small

or (strong sense)

#
{

i ∈ I : ui 6= 0
}

is finite .
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Sparse Regularization

Regularization with Non-convex Functionals

Sub-quadratic Regularization

Let U be a Hilbert space and (φi )i∈I an orthonormal basis. Then

‖u‖2U =
∑
i

|ui |2 .

Idea: Obtain (weak) sparsity by replacing quadratic regularization
with sub-quadratic regularization:
Consider

R(u) :=
∑
i

|ui |p with 1 ≤ p < 2 .

Stronger penalization of small coefficients, weaker penalization of
large coefficients.
Minimizer of Tikhonov functional will be in `p.
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Sparse Regularization

Regularization with Non-convex Functionals

Sparsity by Differentiability

Consider (φk)k∈N Fourier-basis of L2(0, 2π). Then

‖u′‖2 =
∑
k

k2|uk |2 .

Reverse Hölder inequality:∑
k

k2|uk |2 ≥
(∑

k

k−2q
)−1/q(∑

k

|uk |2p
)1/p

with 0 < p < 1, q > 0, and 1/p − 1/q = 1. Therefore:

‖u′‖2 < +∞ =⇒ (uk)k∈N ∈ `2/3+ε .

But: “Scale dependent sparsity pattern.”
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Sparse Regularization

Regularization with Non-convex Functionals

Non-convex Regularization

Achieve sparsity in the strong sense by choosing

R(u) =
∑
i

|ui |p with 0 < p < 1 .

More general setting:

R(u) :=
∑
i

wiφ(ui )

with
wi > wmin ≥ 0 and φ : R→ [0,+∞] .

Conditions for this to make sense?
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Well-Posedness

Important Properties

Existence:

T (·;α, v) attains a minimizer for every α > 0 and v ∈ V .

Stability:

If y (k) → y and u
(k)
α ∈ arg min T (·;α, v (k)) then

u(k)
α → uα ∈ arg min T (·;α, v) .

Convergence:

If ‖v δ − v †‖ ≤ δ → 0, α→ 0 and δ2/α→ 0, then

arg min T (·;α, v δ) = uδα → u† = arg min
{
R(u) : Fu = v †

}
.

Markus Grasmair Sparse Regularization with Non-convex Regularization Terms



Sparse Regularization with Non-convex Regularization Terms

Well-Posedness

Lower Semi-continuity

Direct method of the calculus of variations:

If T is weakly lower semi-continuous and coercive, then a
minimizer exists.

Recall:
R(u) =

∑
i

wiφ(ui ) .

Lemma

The following are equivalent:

The functional R is lower semi-continuous.

The functional R is weakly lower semi-continuous.

The function φ is lower semi-continuous.
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Well-Posedness

Coercivity

Recall: R is coercive, if ‖u‖ → ∞ implies R(u)→∞.

Lemma

Assume that there exists C > 0 with

φ(t) ≥ Ct2

1 + t2

and
lim

t→±∞
φ(t) = +∞ .

Then R is coercive.

If supi wi < +∞, then also the converse holds.

If supi wi = +∞, weaker growth of φ is possible.

Markus Grasmair Sparse Regularization with Non-convex Regularization Terms



Sparse Regularization with Non-convex Regularization Terms

Well-Posedness

Radon–Riesz Property

Under the natural assumptions introduced above, the functional R
satisfies the Radon–Riesz property:

Lemma

Let the assumptions for lower semi-continuity and coercivity be
satisfied.
If (u(k))k∈N ⊂ `2 converges weakly to u ∈ `2 and
R(u(k))→ R(u) < +∞, then

‖u(k) − u‖ → 0 .

Important property for deducing stability and convergence in norm
topology.
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Well-Posedness

Well-posedness

Theorem

Assume that the following hold:

The function φ is lower semi-continuous and φ(0) = 0.

limt→±∞ φ(t) = +∞.

There exists C > 0 with

φ(t) ≥ Ct2

1 + t2
.

Then Tikhonov regularization with R(u) =
∑

i wiφ(ui ) is
well-posed, stable, and convergent.

Here: stability and convergence in sub-sequential sense.
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Well-Posedness

Necessary Conditions for Sparsity

Lemma

Assume that there exists C > 0 such that

φ(t) ≥ C |t|
1 + |t|

.

Then every local minimizer of T (·;α, v) is sparse in the strong
sense.

In a sense:

Sparsity of solution ⇐⇒ Non-differentiability of φ at 0.
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Convergence Rates

Rates for Quadratic Regularization

Convergence Rates for Quadratic Regularization

Quantitative estimate of the quality of the regularized solutions:

Let
R(u) = ‖u‖2 and u† ∈ Ran F ∗ .

If
δ ∼ α , ‖v δ − v †‖ ≤ δ → 0 ,

and
uδα ∈ arg min

u
T (u;α, v δ) ,

then
‖uδα − u†‖ = O(

√
δ) as δ → 0 .
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Convergence Rates

Rates for Non-convex Regularization

Infinite Growth at Zero

Recall: lower Dini derivatives of φ : R→ [0,+∞] defined as

D+φ(t) = lim inf
ε→0+

φ(t + ε)− φ(t)

ε
,

D−φ(t) = lim inf
ε→0−

φ(t + ε)− φ(t)

ε
.

In particular:

D±φ(0) = ±∞ ⇐⇒ φ has infinite growth near zero .
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Convergence Rates

Rates for Non-convex Regularization

Convergence Rates for Sparse Regularization

Define
supp(u†) :=

{
i ∈ I : u†i 6= 0

}
.

Theorem

Assume that the following hold:

D±φ(0) = ±∞.

u† is the unique R-minimizing solution of Fu = y †.

u† is sparse and F is injective on `2(supp(u†)).

If α ∼ δ we have
‖uδα − u†‖ = O(δ) .
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Convergence Rates

Rates for Non-convex Regularization

Restricted Injectivity

Uniqueness of u† necessary for obtaining any convergence rates
(else: convergence to different minimizers).

In non-convex case, uniqueness of u† stronger condition than
restricted injectivity:

If φ ∈ C 2(R \ {0}) and φ′′(t) ≤ 0 for t 6= 0, then:

Uniqueness of u† =⇒ Injectivity of F on supp(u†).

More general: same implication holds, if φ is locally concave on
R \ {0}.
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Summary

Summary

General setting for (componentwise) Tikhonov regularization
on `2:

R(u) =
∑
i

wiφ(ui ) .

Necessary and sufficient conditions for well-posedness
(existence, stability, convergence) only in terms of φ.

Sparsity for sufficiently fast growth at zero.

Linear convergence rates for infinite growth at zero — if
minimizer is unique.
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