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L Sparse Regularization

L(,)uadratic Regularization

Setting

Let U, V be Hilbert spaces and F: U — V bounded linear.
Consider the approximative solution of the operator equation

for given v € V.

If the operator equation is ill-posed (e.g. if F: U — V is compact),
regularization is necessary: search for u, € U minimizing

T (u; a0, v) := ||Fu — v||? + aR(u)

with regularization functional R: U — R>¢ and regularization
term a > 0.
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LSparse Regularization

L(,)uadratic Regularization

Quadratic Regularization

Consider ) ,
T(ui o, v) = [|Fu— vy, +allully, -

Original setting by Tikhonov: U = W*2(Q).
Regularization term enforces smoothness (differentiability) of the
approximate solutions.

In some applications (signal / image processing), smoothness no
realistic assumption / no important property.

Recent idea: instead of smoothness, try to enforce sparsity with
respect to a given basis / frame / subset.
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L Sparse Regularization

L(,)uadratic Regularization

Sparsity

Let (¢i)ics C U be some bounded family. Find
u= Z u,-gb,- ey
il

with
Fu

Q

v

such that (weak sense)
#{i € l:|u| >0} is small
or (strong sense)

#{i el u# 0} is finite .
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LSparse Regularization

LRegularization with Non-convex Functionals

Sub-quadratic Regularization

Let U be a Hilbert space and (¢;);c; an orthonormal basis. Then
lullyy =" Juif* .

Idea: Obtain (weak) sparsity by replacing quadratic regularization
with sub-quadratic regularization:
Consider
R(u) := Z|u,-|p withl1<p<2.
1

Stronger penalization of small coefficients, weaker penalization of
large coefficients.
Minimizer of Tikhonov functional will be in ¢P.
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LSparse Regularization

LRegularization with Non-convex Functionals

Sparsity by Differentiability

Consider (¢x)ken Fourier-basis of L2(0,27). Then
/117 = kP fukf
k
Reverse Holder inequality:
-1/ 1/
Z k2\uk\2 > (Z k72q> q(Z|Uk|2p) p
k k k
with0<p<1 ¢g>0, and 1/p—1/q = 1. Therefore:
Iu']” < 400 => (uk)en € /3.

But: “Scale dependent sparsity pattern.”
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LSparse Regularization

LRegularization with Non-convex Functionals

Non-convex Regularization

Achieve sparsity in the strong sense by choosing

R(u)=> |ulP  with0<p<1.
i
More general setting:
with
W; > Wmin > 0 and ¢: R —[0,400] .

Conditions for this to make sense?
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L Well-Posedness

Outline

© Well-Posedness
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L Well-Posedness

Important Properties

Existence:
T(; v, v) attains a minimizer for every &« > 0 and v € V.

Stability:
If y(K) — y and u((xk) €argmin7(+; a, v(k)) then

ul) = uy € argmin (- a, v) .

Convergence:
If |[v® —vi|| <6 =0, a—0and 62/a — 0, then

argmin T(5o,v%) =) — ul =arg min{R(v) : Fu = VT} .
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L Well-Posedness

Lower Semi-continuity

Direct method of the calculus of variations:

If T is weakly lower semi-continuous and coercive, then a
minimizer exists.

Recall:

R(u) = wid(u;) .

Lemma
The following are equivalent:
@ The functional R is lower semi-continuous.

@ The functional R is weakly lower semi-continuous.

@ The function ¢ is lower semi-continuous.
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L Well-Posedness

Coercivity

Recall: R is coercive, if ||u|| — oo implies R(u) — oo.

Lemma

Assume that there exists C > 0 with

Ct?
>
o(t) 2 1+ ¢2
and
tﬂipoo ¢(t) - —|—OO

Then R is coercive.

If sup; w; < 400, then also the converse holds.

If sup; w; = 400, weaker growth of ¢ is possible.
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L Well-Posedness

Radon—Riesz Property

Under the natural assumptions introduced above, the functional R
satisfies the Radon—Riesz property:

Lemma

Let the assumptions for lower semi-continuity and coercivity be
satisfied.

If (u))en C 2 converges weakly to u € (2 and

R(u¥)) — R(u) < +o0, then

|ut®) —u|| = 0.

Important property for deducing stability and convergence in norm
topology.
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L Well-Posedness

Well-posedness

Assume that the following hold:
e The function ¢ is lower semi-continuous and ¢(0) = 0.
@ limi 100 @(t) = +00.
o There exists C > 0 with
Ct?
14127

¢(t) >

Then Tikhonov regularization with R(u) =Y. wij¢(u;) is
well-posed, stable, and convergent.

Here: stability and convergence in sub-sequential sense.
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L Well-Posedness

Necessary Conditions for Sparsity

Lemma

Assume that there exists C > 0 such that

Clt|
1+t

o(t) >

Then every local minimizer of T (-; v, v) is sparse in the strong
sense.

In a sense:

Sparsity of solution <= Non-differentiability of ¢ at 0.

Markus Grasmair Sparse Regularization with Non-convex Regularization Terms



Sparse Regularization with Non-convex Regularization Terms

L Convergence Rates
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© Convergence Rates
@ Rates for Quadratic Regularization
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L Convergence Rates

LRates for Quadratic Regularization

Convergence Rates for Quadratic Regularization

Quantitative estimate of the quality of the regularized solutions:

Let
R(u) = ||ul|? and u' € Ran F* .
If
S~a, vo —vi| <6 =0,
and
u® € argmin T (u; o, v°)
u

then

|ud — uf| = O(V6) as d = 0.
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LConvergence Rates

LRates for Non-convex Regularization

Infinite Growth at Zero

Recall: lower Dini derivatives of ¢: R — [0, +00] defined as

Di¢(t) =lim infM7

e—0t S

D_¢(t) = liminf i

e—0~ IS

In particular:

Dip(0) =+oco <= ¢ has infinite growth near zero .
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LConvergence Rates

LRates for Non-convex Regularization

Convergence Rates for Sparse Regularization

Define
supp(u') == {iel: u:.f £0} .

Assume that the following hold:
e Di¢(0) = to0.

o ul is the unique R-minimizing solution of Fu = y'.

o u'l is sparse and F is injective on (?(supp(u')).

If & ~ & we have
|ug, — uf|| = 0(5) .
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LConvergence Rates

LRates for Non-convex Regularization

Restricted Injectivity

Uniqueness of u' necessary for obtaining any convergence rates
(else: convergence to different minimizers).

In non-convex case, uniqueness of uf stronger condition than
restricted injectivity:

If € C2(R\ {0}) and ¢"(t) <0 for t # 0, then:
Uniqueness of uf == Injectivity of F on supp(u).

More general: same implication holds, if ¢ is locally concave on

R\ {0}.
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LSummary

Summary

@ General setting for (componentwise) Tikhonov regularization
on (2
R(u) = wip(u;) .
i

@ Necessary and sufficient conditions for well-posedness
(existence, stability, convergence) only in terms of ¢.

@ Sparsity for sufficiently fast growth at zero.

@ Linear convergence rates for infinite growth at zero — if
minimizer is unique.
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