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Central Problem: `0 minimization

Let A : Rm×n → Rr (not necessarily linear). Solve

(P0)
minimize

x∈Rm×n
rank(x)

subject to A(x) = b

where rank(x) := ‖σ(x)‖0 :=
∑

j sign(σ(x)j) with sign (0) := 0
for σ(x) the vector of singular values of x .

Combinatorial optimization problem =⇒ NP-complete
(Natarajan, 1995).



Central Problem: `0 minimization

Relaxations
For 0 < p ≤ 1 solve instead

(Pp)
minimize

x∈Rm×n
‖σ(x)‖p

subject to A(x) = b

where ‖x‖p :=
(∑

j σ(x)p
j

)1/p
.

(For p = 1 and m > 1, ‖x‖1 is the nuclear norm.)

I m = 1, p = 1, A linear and satisfies the Restricted
Isometry Property (RIP): optimal solutions of P0 and P1
coincide (Candés & Tao, 2006-2007).

I m = 1, 0 < p < 1, A linear and satisfies the Restricted
Isometry Property (RIP): optimal solutions of P0 and Pp
coincide (LaiWaing, 2010).



Central Problem: `0 minimization
Rewieghted/greedy algorithms
For m = 1, A linear, p = 1 and α > 0 fixed, solve

(P1,L)
minimize
(x ,L)∈Rn×Rn

f (x ,L)

subject to Ax = b

where

f (x ,L) :=
n∑

j=1

Lj |xj |+ ιR+(L) + 1
2‖L− α‖

2

I Orthogonal Matching Pursuit (OMP) (Chen, Donoho &
Saunders, 1998-99)

I steepest subgradient descent algorithm with exact
linesearch and dynamic weights applied to the dual
(Borwein & L., 2011) (recovers OMP as a limiting case).

I see also Fornasier, Rauhut & Ward (2011), Candés,
Wakin, & Boyd (2008), ...



Nonconvex Feasibility

find x ∈ Mε ∩ Cs

where
Mε =

{
x ∈ Rm×n |dRr (A(x),b) ≤ ε

}
for dRr : Rr × Rr → R+ a distance function, and

Cs :=
{

x ∈ Rm×n | rank(x) ≤ s
}
.

I Combettes&Trussell (1990)
I Beck&Teboulle (2011).
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Central Algorithm: Method of Alternating
Projections (MAP)

Consider more generally the problem

find x ∈ A ∩ B

for two nonempty closed subsets A, B of a Hilbert space H.

For a closed nonempty subset C ⊂ H define the projection of x
onto C by

PC : x 7→ argmin y∈C{‖x − y‖}

Method of Alternating Projections
given x0 ∈ H generate the sequence {xk}∞k=0 in H by

bk∈PBak , a2k∈PAbk−1.



Method of Alternating Projections (MAP)

I If A and B are subspaces the MAP sequence converges
strongly to PA∩Bx0 (von Neumann, 1933).

I If A and B are closed and convex and if one of the sets is
compact the MAP sequence converges to a fixed point
(Cheney-Goldstein 1959).

I If A and B are closed and convex with nonempty
intersection the MAP sequence converges weakly to a
point x ∈ A ∩ B (Bregman, 1965).



Method of Alternating Projections (MAP)

I If the angle between the subspaces A and B is positive
then convergence is linear (Aronszajn, 1950).

I If A and B are closed and convex with int A ∩ B 6= ∅ the
MAP sequence converges linearly to a point x ∈ A ∩ B
(Gubin-Polyak-Raik, 1967).

I If A and B are manifolds in E with TA(x) + TB(x) = E then
for initial points x0 close to x the MAP sequence converges
linearly (Lewis & Mallick, 2008).

I If A ⊂ E is closed, B ⊂ E is superregular and
NA(x) ∩ −NB(x) = {0} then for initial points x0 close to x
the MAP sequence converges linearly (Lewis, L. & Mallick,
2009).



Method of Alternating Projections (MAP)

Local convergence of MAP requires two things:
I regularity of the intersection A ∩ B =⇒ constraint

qualifications
I regularity of the sets A and B near the intersection.

Both of these notions require the normal cone.
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Variational Analysis

Restricted normal cones
(Bauschke, L., Phan & Wang, 2012)
Let A and B be nonempty subsets of a Euclidean space E, and
let a and u be in E. If a ∈ A, we define the restricted normal
cones of A at a as follows:

1. The B-restricted proximal normal cone of A at a is

N̂B
A (a) := cone

((
B∩P−1

A a
)
−a
)

= cone
((

B−a
)
∩
(
P−1

A a−a
))
.

2. The B-restricted normal cone NB
A (a) is implicitly defined by

u ∈ NB
A (a) if and only if there exist sequences (an)n∈N in A

and (un)n∈N in N̂B
A (an) such that an → a and un → u.

If a /∈ A, then all normal cones are defined to be empty.



Variational Analysis



Variational Analysis
Joint constraint qualification number (CQ-number)
Let A, Ã, B, B̃, be nonempty subsets of E, let c ∈ E, and let
δ ∈ R++. The CQ-number at c associated with (A, Ã,B, B̃) and
δ is

θδ := θδ
(
A, Ã,B, B̃

)
:= sup

{
〈u, v〉

∣∣∣∣∣ u ∈ N̂ B̃
A (a), v ∈ −N̂ Ã

B (b), ‖u‖ ≤ 1, ‖v‖ ≤ 1,
‖a− c‖ ≤ δ, ‖b − c‖ ≤ δ.

}
.

For nontrivial collections1 A := (Ai)i∈I , Ã := (Ãi)i∈I ,
B := (Bj)j∈J , B̃ := (B̃j)j∈J of nonempty subsets of E, the
joint-CQ-number at c ∈ E associated with (A, Ã,B, B̃) and
δ > 0 is

θδ = θδ
(
A, Ã,B, B̃

)
:= sup

(i,j)∈I×J
θδ
(
Ai , Ãi ,Bj , B̃j

)
.

1The collection (Ai)i∈I is said to be nontrivial if I 6= ∅.



Variational Analysis

The Friedrichs angle between subspaces A and B is the
number in [0, π2 ] whose cosine is given by

c(A,B) :=

sup
{
| 〈a,b〉 |

∣∣∣a ∈ A ∩ (A ∩ B)⊥,b ∈ B ∩ (A ∩ B)⊥, ‖a‖, ‖b‖ ≤ 1
}
.

CQ-number of two (affine) subspaces and Friedrichs angle
(Bauscke, L., Phan & Wang 2012)
Let A and B be affine subspaces of E, and let δ > 0. Then

θδ(A,A,B,B) = θδ(A,E,B,B) = θδ(A,A,B,E) = c(A,b) < 1.
(2)

Moreover, if A and B are affine subspaces of E with x ∈ A ∩ B,
and δ > 0, then (2) holds at x .



Variational Analysis

Angle of intersection



Variational Analysis

special case: two distinct lines through the origin
Suppose that wa and wb are two vectors in E such that
‖wa‖ = ‖wb‖ = 1. Let A := Rwa, B := Rwb, and δ > 0. Assume
that A ∩ B = {0}. Then the CQ-number at 0 is

θδ(A,A,B,B) = θδ(A,E,B,B) = θδ(A,A,B,E) = | 〈wa,wb〉 | < 1.



Variational Analysis

Superregularity (Lewis, L. & Mallick, 2009)
We say that C is (A, ε, δ)-regular at c ∈ E if ε ≥ 0, δ > 0, and

(y ,b) ∈ B × B,
‖y − c‖ ≤ δ, ‖b − c‖ ≤ δ,

u ∈ N̂AB (b)

 ⇒ 〈u, y − b〉 ≤ ε‖u‖·‖y−b‖.

(3)
If B is (E, ε, δ)-regular at c, then we also simply speak of
(ε, δ)-regularity.

Example: sets for which the projector is single-valued on
neighborhoods of the set (prox-regular sets) are (ε, δ)-regular.
Convex sets are (0,∞)-regular.



Harvest Time

Linear convergence of MAP
Let A := (Ai)i∈I and B := (Bj)j∈J be nontrivial collections of
nonempty closed subsets of E, and let Ã := (Ãi)i∈I and
B̃ := (B̃j)j∈J be reasonable collections of subsets of E,
Ã :=

⋃
i∈I Ãi and B̃ :=

⋃
j∈J B̃j . Let

c ∈ (∪i∈I(Ai)) ∩
(
∪j∈J(Bj)

)
and assume that there exists δ > 0 such that

1. A is (B̃,0,3δ)-joint-regular at c;

2. B is (Ã,0,3δ)-joint-regular at c; and
3. θ < 1, where θ := θ3δ is the joint-CQ-number at c

associated with (A, Ã,B, B̃)



Harvest Time

Linear convergence of MAP
Suppose also that the starting point of the MAP b−1 satisfies
‖b−1 − c‖ ≤ (1−θ)δ

6(2−θ) . Then (an)n∈N and (bn)n∈N converge linearly
to some point in c̄ ∈ A ∩ B with ‖c̄ − c‖ ≤ δ and rate θ2; in fact,

(∀n ≥ 1) max
{
‖an − c̄‖, ‖bn − c̄‖

}
≤ δ

2− θ
(
θ2)n−1

.
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Normal cone to Cs

Recall that Cs := {x ∈ Rm×n | rank(x) ≤ s} and define
Supp (x) := range(xT ).

Normal cone to Cs (L. 2012)
Let r := min{m,n}, fix s ∈ {0,1, . . . , r} and define the set
Cs := {x ∈ Rm×n | rank(x) ≤ s}. At a point x ∈ Cs

NCs (x) =
{

v ∈ Rm×n
∣∣∣ v ∈ Supp (x)⊥ and rank(v) ≤ r − s

}
.

Moreover, NCs (x) = N̂Cs (x) at every x with rank(x) = s.



Normal cone to Cs: vector case, x ∈ Rn

Define

J := 2{1,2,...,n} and Js := J (s) := {J ∈ J | |J| = s}

and set
(∀J ∈ J ) CJ := span

{
ej | j ∈ J

}
.

Define the collections

C := C̃ := (CJ)J∈Js and M := M̃ := M :=
{

x ∈ Rn |Ax = b
}
.

Clearly,

Cs :=
{

x ∈ Rn | ‖x‖0 ≤ s
}

= C̃s :=
⋃

J∈Js

CJ

and
M =

{
x ∈ Rn |Ax = b

}
.



Normal cone to Cs: vector case, x ∈ Rn

Then

NCs (x) =
{

v ∈ Rn
∣∣∣ ‖v‖0 ≤ n − s and v ∈ Supp (x)⊥

}
=

⋃
I(x)⊆J∈Js

C⊥J .

Consequently, if ‖x‖0 = s, then NCs (x) = Supp (x)⊥ = C⊥I(x).



Application to sparse optimization

MAP for sparse-affine feasibility converges locally linearly

Let Cs, C, C̃ M,M and M̃ be defined as above. Suppose that
s ≤ n − 1, that x ∈ Cs ∩M, and fix δ ∈

(
0, δ
)

for
δ := 1

3 min
{

dCJ (x) | x 6∈ CJ , J ∈ Js
}

. Then

δ = 1
3 min

{
|x j | | j ∈ I(x)

}
and

θ3δ(C, C̃,M,M) = max {c(CJ ,M) | x ∈ CJ , J ∈ Js } < 1,

where θ3δ denotes the joint-CQ-number at x associated with
(C, C̃,M,M).



Application to sparse optimization

MAP for sparse-affine feasibility converges locally linearly
Generate the sequences {ck}k∈N and {mk}k∈N in Rn by the
MAP algorithm

ck = PCs (mk−1) and mk = PM(ck )

where

M =
{

x ∈ Rm×n |Ax = b
}

and Cs :=
{

x ∈ Rn | ‖x‖0 ≤ s
}
.

Suppose the starting point of the MAP m−1 ∈ M satisfies
‖m−1 − x‖ ≤ (1−θ)δ

6(2−θ) . Then (ck )k∈N and (mk )k∈N converge

linearly to some point in c̄ ∈ Cs ∩M ∩ B(x , δ) with rate θ2.



MAP for sparse-affine feasibility converges locally
linearly

Remarks

1. Regularity of the intersection is not an assumption of the
theorem; it is automatically satisfied. This is in contrast to
the results of Lewis&Mallick (2008) and Lewis,L.&Mallick
(2009) where the required regularity is assumed to hold.
Simple examples illustrate that the notions of regularity
developed in those works are not satisfied

2. Our analysis is the first (to our knowledge) to yield a
quantification of the neighborhood on which local linear
convergence is guaranteed.

3. Finding the local neighborhood on which linear
convergence is guaranteed may well be tantamount of
finding the sparsest solution; however, it does open the
door to justify combining the MAP with more aggressive
algorithms such as Douglas-Rachford



Thanks for your attention.
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