A Symbol-Based Bar Code Decoding Algorithm

Rachel Ward, Mark Iwen, Fadil Santosa

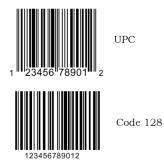
University of Texas at Austin, Duke University, University of Minnesota

Sunday, May 20, 2012

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

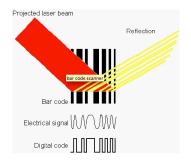
One Dimensional Bar codes

- Many different symbologies
- Built-in error correction



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

How Bar Codes Are Read



Laser shines narrow beam back-and-forth on a bar code

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Back scattered intensity converted to voltage signal

Modeling The Measured Signal

View bar code as a binary function

$$z: \mathbb{R}^+ \to \{0, 1\}$$

- Laser-scanner system acts like point spread function
- Point spread blur depends on scan distance, optics
- Simplest model is Gaussian point spread function

$$g_{lpha,\sigma}(t) \;=\; rac{lpha}{\sqrt{2\pi\sigma^2}} e^{-t^2/2\sigma^2}$$

where α and σ are unknown

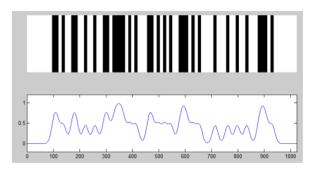
Signal can be approximated by convolution plus noise

$$h(t) = \int g_{\alpha,\sigma}(t-s)z(s)ds + n(t)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Inverse Problem

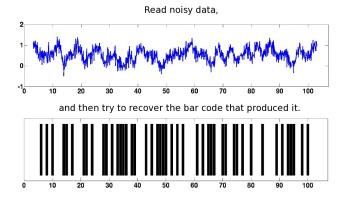
Existing methods: infer edges between black and white bars "locally" from signal



 Theoretical recovery guarantees for small amount of blue and noise in [Esedoglu 04, Esedoglu Santosa, 11]

The Inverse Problem

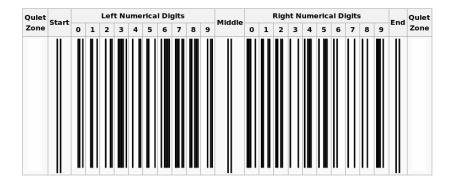
More blur + additive noise



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Universal Product Code (UPC) Bar Codes

- Three types of components: digit, start/end, and middle
- Each digit has a unique sequence of 7 black and white bars
- Fixed start, middle, and end sequences
- Different left and right codes allow upside down reading



ヘロマ ヘ動 マイロマー

Universal Product Code (UPC) Bar Codes

- Each digit can be represented as a binary string of length 7
- Minimum Hamming distance between any two digits is 2

digit	L-pattern	R-pattern
0	0001101	1110010
1	0011001	1100110
2	0010011	1101100
3	0111101	1000010
4	0100011	1011100
5	0110001	1001110
6	0101111	1010000
7	0111011	1000100
8	0110111	1001000
9	0001011	1110100

The UPC Bar Code Dictionary

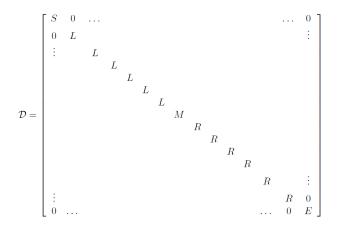
Every UPC bar code has the form

$SL_1L_2L_3L_4L_5L_6MR_1R_2R_3R_4R_5R_6E$

where $L_1 \dots L_6$ and $R_1 \dots R_6$ represent UPC code digits

▶ Take $S, L_1 \dots L_6, M, R_1 \dots R_6, E$ as columns from matrices

The UPC Bar Code Dictionary



- ► The dictionary, *D*, is block diagonal
- Hamming distance between any two columns is at least 2

・ロット (雪) (日) (日) (日)

▶ Bar code is z = Dx, where $x \in \{0, 1\}^{123}$ has 15 ones

Discrete Representation of Measured Data

Continuous Model

$$egin{aligned} h(t) &= \int g_{lpha,\sigma}(t-s)z(s)ds + n(t), \ g_{lpha,\sigma}(t) &= rac{lpha}{\sqrt{2\pi\sigma^2}}e^{-t^2/2\sigma^2} \end{aligned}$$

Discretized data is

$$h = \alpha G_{\sigma} \mathcal{D} \mathbf{x} + \mathbf{n}$$

- $x \in \{0, 1\}^{123}$ is 15-sparse
- $\mathcal{D} \in \{0,1\}^{95 \times 123}$ is the block diagonal dictionary matrix
- $G_{\sigma} \in \mathbb{R}^{m imes 95}$ blurs the discrete bar code
- Parameters α and σ are unknown
- $n \in \mathbb{R}^m$ is a noise vector

Two Step Solution Approach

Discrete Problem

Recover valid 15-sparse $x \in \{0, 1\}^{123}$ given

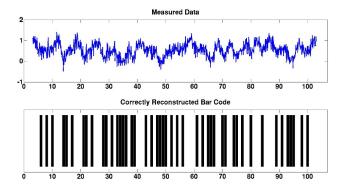
$$h = \alpha G_{\sigma} \mathcal{D} x + n.$$

- We know that x₁ = x₆₂ = x₁₂₃ = 1 due to fixed start, middle, and end bar code sequences. Use corresponding blocks of *h* to estimate α and σ.
- Obtain $\tilde{\alpha} \approx \alpha$ and $\tilde{\sigma} \approx \sigma$
- Greedily recover x digit by digit thereafter by minimizing

$$\left\| \boldsymbol{h} - \tilde{\alpha} \boldsymbol{G}_{\tilde{\sigma}} \left(\boldsymbol{SL}_{1} \boldsymbol{L}_{2} \boldsymbol{L}_{3} \boldsymbol{L}_{4} \boldsymbol{L}_{5} \boldsymbol{L}_{6} \boldsymbol{M} \boldsymbol{R}_{1} \boldsymbol{R}_{2} \boldsymbol{R}_{3} \boldsymbol{R}_{4} \boldsymbol{R}_{5} \boldsymbol{R}_{6} \boldsymbol{E} \right)^{T} \right\|_{1}$$

over all 10 choices of L_1 with $L_2 \cdots E$ zeroed out, then all 10 choices of L_2 with $L_3 \cdots E$ zeroed out, etc.

Numerical Example: $\sigma = .75, \alpha = 1$, and 34% Noise

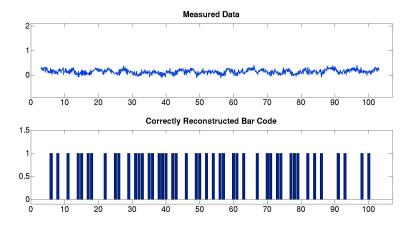


- Noise is i.i.d. Gaussian
- Estimates were $\tilde{\sigma} = 1$ and $\tilde{\alpha} = 1.14$
- Signals decoded correctly about 80% of the time for these noise levels and σ, α settings

ヘロア 人間 アメヨア ヘヨア

3

Numerical Example: $\sigma = .75, \alpha = .25$, and 10% Noise



ヘロト ヘポト ヘヨト ヘヨト

3

Estimates were $\tilde{\sigma} = .8$ and $\tilde{\alpha} = .22$.

What can we prove?

- If blur parameter σ is known, we can show that if the blur is not excessive and the noise level is not too great, the algorithm converges to the right solution.
- We can also show that the reconstruction is insensitive to the value of *σ*.
- The proof hinges on the matrix

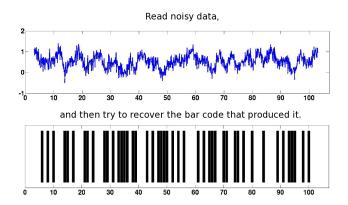
$G_{\sigma}\mathcal{D}$

being "almost block diagonal", and nearly preserving the minimum "hamming distance" between all pairs of columns

(日) (日) (日) (日) (日) (日) (日)

Extensions

- Unknown start position
- Variable-length bar codes (Code128)



・ロット (雪) ・ (日) ・ (日)

3

Thank You!

Questions?