Advances in first-order methods: constraints, non-smoothness and faster convergence

Stephen Becker

Laboratoire Jacques-Louis Lions, UPMC/CNRS;
Fondation Sciences Mathématiques de Paris

May 20 2012

Joint work with:
Michael Grant (Caltech, CVX Research)
Emmanuel Candès (Stanford)
Jalal Fadili (GREYC-ENSICAEN)
Current state of first-order methods

Smooth unconstrained convex minimization

\[\min_x f(x) \quad f \in \Gamma_0(\mathbb{R}^n) \cap C^1(\mathbb{R}^n) \quad \text{and} \quad \nabla f \text{ is } L - \text{Lipschitz} \]

Current tricks: limited memory quasi-Newton (e.g. L-BFGS), non-linear conjugate gradients. Results are very good.
Current state of first-order methods

Smooth unconstrained convex minimization

\[
\min_x f(x) \quad f \in \Gamma_0(\mathbb{R}^n) \cap C^1(\mathbb{R}^n) \quad \text{and} \quad \nabla f \text{ is } L - \text{Lipschitz}
\]

Current tricks: limited memory quasi-Newton (e.g. L-BFGS), non-linear conjugate gradients. Results are very good.

Now consider \(\min_x f(x) + \psi(x) \).

- \(\psi(x) = \|x\|_1 \) is non-smooth
- \(\psi(x) = \iota_C(x) \equiv \begin{cases} 0 & x \in C \\ \infty & x \notin C \end{cases} \) is indicator of closed convex set

E.g. \(C = \{x : x \geq 0\} \) or \(C = \{x : \|x\|_\infty \leq 1\} \)

Results are not good. Worst-case behavior well-understood (Nemirovskii, Nesterov) and algorithms rarely exceed worst-case behavior.
Proximity operator: generalization of projection

Let $\psi \in \Gamma_0(\mathbb{R}^n)$ (proper, closed/lsc, convex functions)

Definition (Proximity operator)

$$\text{prox}_f(y) = \arg\min_x \psi(x) + \frac{1}{2}\|x - y\|^2$$

Example

$$\psi(x) = \iota_C(x) \equiv \begin{cases} 0 & x \in C \\
\infty & x \notin C \end{cases}$$

where C is closed, non-empty and convex. Then

$$\text{prox}_C = P_C.$$

Efficient for many functions
Problem classes

Our interest is in “reasonable” non-smooth and constrained convex problems. Assume still f is nice, $\psi_i \in \Gamma_0(\mathbb{R}^n)$, and prox_{ψ_i} is easy.

Definition (primal-dual class)

$$
\min_x f(x) + \sum_i \psi_i(A_i x + b_i), \quad \psi_i \in \Gamma_0(\mathbb{R}^n)
$$

Definition (primal class)

$$
\min_x f(x) + \psi(x), \quad \psi \text{ separable}
$$

Definition (generalized primal)

$$
\min_x f(x) + \sum_i \psi_i(x), \quad \psi_i \text{ separable}
$$

For the primal-dual class, there were no reasonable first-order methods at all until 2010. We show one such method.

For the primal class, we can solve, but slowly. Cannot apply quasi-Newton or non-linear CG. We show a quasi-Newton method.
Outline

1 Primal-dual class

2 Primal class
Solving the primal-dual class

\[\min_x F(x) = f(x) + \sum_i \psi_i(A_i x + b_i) \]

Problems with primal approach

- \(\text{prox}_\psi \) is easy but \(\text{prox}_{\psi \circ A} \) is not
- \(\text{prox}_\psi \) is easy but \(\text{prox}_{\psi_1 + \psi_2} \) is not
Solving the primal-dual class

\[\min_x F(x) = f(x) + \sum_i \psi_i(A_i x + b_i) \]

Problems with primal approach

- \(\text{prox} \psi \) is easy but \(\text{prox} \psi \circ A \) is not
- \(\text{prox} \psi \) is easy but \(\text{prox} \psi_1 + \psi_2 \) is not

Our approach (in “TFOCS” package: tfocs.stanford.edu)

- Solve via proximal point
 - \(y_{k+1} = \arg\min_x F(x) + \mu/2\|x - y_k\|^2 \)
- Solve sub-problem via a dual method
 - The strongly convex term makes the dual nice
- The dual problem is separable in \(\psi_i^* \)
- The \(A_i \) terms are now innocuous
Solving the primal-dual class: other approaches

Approach is simple, but... all methods are recent

- TFOCS (Becker, Candès, Grant 2010)
- relaxed Arrow-Hurwicz (Chambolle, Pock 2010)
 - extension (He, Yuan 2010; Condat 2011; Vū 2011)
- monotone+skew (Briceño-Arias, Combettes 2011)
 - forward-backward-forward (Tseng 1998)
- product-space (Combettes, Pesquet 2011)

Chen, Teboulle 1994 is similar
Outline

1 Primal-dual class

2 Primal class
Solving the primal class

Goal is to speed up the problem $\min_x f(x) + \psi(x)$

Standard algorithm: proximal/projected gradient descent.

$$x_{k+1} = \arg\min_x Q_f(x; x_k) + \psi(x)$$

where $Q_f(\cdot; x_k)$ is a quadratic approximation to f at x_k.
Solving the primal class

Goal is to speed up the problem $\min_x f(x) + \psi(x)$

Standard algorithm: proximal/projected gradient descent.

$$x_{k+1} = \arg\min_x Q_f(x; x_k) + \psi(x)$$

where $Q_f(\cdot; x_k)$ is a quadratic approximation to f at x_k.

To apply fancy algorithms (CG, BFGS), three common strategies

- If ψ is non-smooth, pretend it is smooth and try BFGS anyhow
- Active-set methods
- Use a non-trivial quadratic model Q_f and solve subproblem approximately

We take the last approach, but provide an algorithm that exactly solves the subproblem in $O(n \log n)$ time for a specific type of $Q_f(\cdot; x_k)$
Quadratic approximation

Key step in algorithm:

\[x_{k+1} = \arg\min_x Q_f(x; x_k) + \psi(x) \]

(1)

Typically

\[Q_f(x; x_k) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \langle x - x_k, B_k(x - x_k) \rangle / 2 \]

where \(B_k \) is diagonal (e.g. \(B_k = LI \)).

Quasi-Newton idea: want \(B \approx \nabla^2 f(x_k) \) and do this via \(B_{k+1} = B_k + \Delta_k \) where \(\Delta_k \) is a rank-1 or rank-2 term update.

We can apply this, but must solve (1) iteratively.

e.g. PQN (Schmidt, van den Berg, Friedlander, Murphy 2009)

Consider the special class formed by 0-memory SR1 quasi-Newton:

\[B_k = \tilde{D}_k + \tilde{u}\tilde{u}^T, \quad \tilde{D}_k = \text{diag}(\tilde{d}_k) > 0 \]
Proximity operator in scaled norm

\[B_k = \tilde{D}_k + \tilde{u}\tilde{u}^T, \quad H_k = B_k^{-1} = D_k + uu^T \]

Key computation is equivalent to

\[x_{k+1} = \arg\min_x \psi(x) + \frac{1}{2} \| x_k - H_k^{-1} \nabla f(x_k) \|_{B_k}^2 \]

Can we solve this (efficiently)? Yes! If \(\psi \) is separable and piecewise linear

- \(\psi(x) = \| x \|_1 \)
- \(\psi(x) = \max(0, 1 - x) \) hinge-loss
- \(\psi(x) = \iota\{x:x \geq 0\} \) or \(\psi(x) = \iota\{x:a_1 \leq x \leq a_2\} \)
- \(\psi(x) = \iota\{x:\| x \|_\infty \leq 1\} \)

Inspired by fast projections onto \(\ell_1 \) ball
Example: prox of non-negativity constraint

Nonnegative least-squares (NNLS) with non-diagonal norm

\[
\min_{x \geq 0} \frac{1}{2} \|x - y\|_H^2 - 1, \quad H = D + uv^T
\]

\[D = \text{diag}(d) \succ 0, \; u = v \in \mathbb{R}^n.\]

Introduce Lagrange multiplier \(\lambda \in \mathbb{R}^n \). KKT conditions are:

\[x \geq 0, \; \lambda \geq 0, \; \langle x, \lambda \rangle = 0, \; x = y + (D + uv^T)\lambda\]

Define the scalar \(s = \langle v, \lambda \rangle \). If \(s \) is known, problem is solved:

\[x_i = \lfloor y_i + su_i \rfloor_+, \quad \lambda_i = \lceil -(y_i + su_i)/D_{ii} \rceil_+\]

In other words, we solve the simple diagonal weighted problem with \(y \leftarrow y + su \).
Example: prox of non-negativity constraint. Finding s

Define

$$
\lambda_i^{(s)} = \left\lfloor -(y_i + su_i)/D_{ii} \right\rfloor +
$$

We need a value of s that satisfies $s = \langle v, \lambda^{(s)} \rangle$.

Let $\hat{s}_i = \text{sort}(-y_i/u_i)$ and $p(s) = \langle v, \lambda^{(s)} \rangle$.

Then p is linear in $[\hat{s}_i, \hat{s}_{i+1}]$ and thus trivial to find $p(s) = s$ there.

How to find i? Bisection search.

$$
p(s) = \sum_i (-v_i y_i + sv_i u_i)/D_{ii}) \chi_i(s) \text{ where } \chi(s) \text{ is 0 or 1.}
$$

Slope composed of $v_i u_i / D_{ii}$ terms, so negative due to assumptions on u, v, D.

Thus $s - p(s)$ is monotonic.
Zero-memory SR1 method

\[x_{k+1} = \arg\min_x Q_f(x; x_k) + \psi(x) \]

\[Q(x; x_k) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \| x - x_k \|^2_{B_k} \]

\[H_k = B_k^{-1} = D + uu^T \]

\[D = .8 \tau_{BB} I \]

Choose \(u \) to satisfy the secant equation

\[H_k y_k = s_k, \quad \text{where} \quad s_k = x_k - x_{k-1}, \quad y_k = \nabla f(x_k - \nabla f(x_{k-1}) \quad \text{(SR1)} \]

Here, \(\tau_{BB} \) is a Barzilai-Borwein updates

\[\tau_{BB} = \frac{\langle s_k, y_k \rangle}{\| y_k \|^2} \]

For convergence results, add (non-monotonic) line search

Question: does the extra rank-1 term really matter? N.B.: rank-2 term = zero-memory BFGS = conjugate gradients (for quadratics)
Quasi-Newton vs plain first-order

\[\min f(x) + \psi(x) \]

Both \(f \) and \(\psi \) quadratic. Approximate \(f \), keep \(\psi \) unchanged. \(n = 1000 \)

"diagonal" = Spectral Projected Gradient (i.e. Barzilai-Borwein)
Quasi-Newton vs limited-memory quasi-Newton

$$\min f(x) + \psi(x)$$

Both f and ψ quadratic. Approximate f, keep ψ unchanged. $n = 1000$

```
“diagonal” = Spectral Projected Gradient (i.e. Barzilai-Borwein)
```
Numerical comparisons

First-order methods

- Spectral projected gradient (SPG) (Birgin, Martínez, Raydan 2000)
 - Uses BB stepsize
 - Extend to non-smooth case
- FISTA (Nesterov 1983; Beck, Teboulle 2009)
 - Use BB stepsize and line search
 - Restart every 1000 iterations

“1.5”-order methods. Most use active-set strategy

- L-BFGS-B† (Byrd, Lu, Nocedal, Zhu 1995)
- ASA† “Active Set Algorithm” (Hager, Zhang 2006)
- CGIST “CG + IST” (Goldstein, Setzer 2011)
- FPC-AS “FPC + Active Set” (Wen, Yin, Goldfarb, Zhang 2010)
- PSSas “Projected Scaled Sub-gradient + Active Set” (Schmidt, Fung, Rosales 2007)
- OWL “Orthant-wise Learning” (Andrew, Gao 2007)

† require splitting $x = x_+ - x_-$ with $x_+, x_- \geq 0$

all in MATLAB except L-BFGS-B in Fortran and ASA in C
Numerical comparisons: test 1

Solve LASSO: \(\min_x \lambda \|x\|_1 + \frac{1}{2} \|Ax - b\|^2 \)

\(A \) is 1500 \(\times \) 3000 and \(\mathcal{N}(0, 1) \) iid, \(\lambda = 0.1 \)
Numerical comparisons: test 2

Also LASSO, but pick \(A \) and \(b \) according to 3D discrete differential operator used by Fletcher, \(N = 13^3 = 2197 \), \(\lambda = 1 \).
Numerical comparisons: summary

Subjective rankings in order

<table>
<thead>
<tr>
<th>faster</th>
<th>L-BFGS-B</th>
<th>0-mem SR1</th>
<th>PSSas</th>
<th>FISTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>slower</td>
<td>ASA</td>
<td>CGIST</td>
<td>OWL</td>
<td>SPG</td>
</tr>
</tbody>
</table>

Table: Test 1

<table>
<thead>
<tr>
<th>faster</th>
<th>FPC-AS</th>
<th>0-mem SR1</th>
<th>PSSas</th>
<th>OWL</th>
<th>FISTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>slower</td>
<td></td>
<td>CGIST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPG</td>
<td>L-BFGS-B</td>
<td>ASA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Test 2
Generalized primal algorithm

Recall

Definition (generalized primal)

$$\min_x f(x) + \sum_i \psi_i(x), \ \psi_i \text{ separable}$$

Do not assume that $\text{prox} \sum \psi_i$ is easy. How to solve?

Solution:

Generalized forward-backward algorithm (Raguet, Fadili, Peyré 2011).
Extensions

- Apply quasi-Newton (or static preconditioner) to saddle-point (i.e. primal-dual) problems
- Rank-1 proximity operators for larger class of functions
- Rank-2 proximity operators
- Block-diagonal preconditioner

\[
B = \begin{bmatrix}
D + uu^t & 0 & 0 \\
0 & D + uu^t & 0 \\
0 & 0 & D + uu^t
\end{bmatrix}
\]