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Minimization Problems for Sparse Recovery

We consider A∈ Rm×n,m6 n,b ∈ Rm and

min
y
‖y‖1 s.t. Ay = b, (BP)

further for λ
 0 its denoising variant

min
y

1
2
‖Ay −b‖22 +λ‖y‖1, (QPλ)

with

‖y‖pp :=

n∑
i=1

|yi |
p,p ∈N\{0}.

Norm Description
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So Many Solvers to Compare...

For (BP):

SPGL1

NESTA

YALL1

ISAL1

...

For (QPλ):

ISTA

FISTA

SparSA

FPC

...

How to compare

(e.g. in Matlab)

?

L1TestPack
generates test instances for (QPλ).

matrix A can be gaussian, bernoulli, partial
DCT, heaviside, random orthonormal rows

solution x∗ can be chosen gaussian,
bernoulli, different dynamic ranges.

number of non-zero entries in x∗ eligible.

right side b will be calculated
(we’ll see later...)

www.tu-braunschweig.de/iaa/personal/lorenz/l1testpack
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So Many Solvers to Compare...

For (BP):

SPGL1

NESTA

YALL1

ISAL1

...

For (QPλ):

ISTA

FISTA

SparSA

FPC

...

How to construct test instances?
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Sufficient and Necessary Condition for (BP)

Theorem
Let A= [a1, ...,an]∈ Rm×n, x∗ ∈ Rn and I = supp(x∗). x∗ solves

min‖y‖1 s.t. Ay =Ax∗

uniquely if and only if AI is injective and there exists w ∈ Rm

aT
i w = sign(x∗i ), for x∗i 6= 0 resp. i ∈ I,

|aT
j w |� 1, for x∗j = 0 resp. j ∈ IC.

Notation
For a given x∗ ∈ Rn we will denote I ⊂ {1, ...,n} as the support of x∗,
hence I := supp(x∗) = {i : x∗i 6= 0}. IC is the complement of I.
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Optimality Conditions for (QPλ)

Lemma (Fuchs, 2004)
The vector x∗ is a unique solution of (QPλ) if

aT
i (b−Ax∗) = λsign(x∗i ), for x∗i 6= 0,

|aT
j (b−Ax∗)|� λ, for x∗j = 0, and

AI injective

holds.
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Optimality Conditions for (QPλ)

Lemma (Fuchs, 2004)
The vector x∗ is a solution of (QPλ) if and only if

aT
i (b−Ax∗) = λsign(x∗i ), for x∗i 6= 0,

|aT
j (b−Ax∗)|6 λ, for x∗j = 0

holds.

Sign(x∗)i = sign(x∗i ) if x∗i 6= 0

Sign(x∗)j ∈ [−1,1] if x∗j = 0
x

y
z
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Optimality Conditions for (QPλ)

Lemma (Fuchs, 2004)
The vector x∗ is a solution of (QPλ) if and only if
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Optimality Conditions for (QPλ)

Lemma
The vector x∗ is a solution of (QPλ) if and only if

AT (b−Ax∗)∈ λSign(x∗)

holds.

Idea
For a given A and λ
 0, choose x∗ and construct b.

May 20, 2012 Kruschel,
Lorenz

Constructing Test Instances for Sparse Recovery Algorithms Page 7



Constructing instances for (QPλ)

Theorem (Lorenz, 2011)

Let A∈ Rm×n,λ
 0,x∗ ∈ Rn and z ∈ rg(AT )∩Sign(x∗).
Then for any w such that AT w = z and b = λw +Ax∗, it holds that
x∗ solves

min
y

1
2
‖Ay −b‖22 +λ‖y‖1.

Proof.

AT (b−Ax∗) =AT (λw +Ax∗−Ax∗) = λAT w ∈ λSign(x∗)

�
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Constructing instances for (QPλ)

Theorem (Lorenz, 2011)

Let A∈ Rm×n,λ
 0,x∗ ∈ Rn and z ∈ rg(AT )∩Sign(x∗).
Then for any w such that AT w = z and b = λw +Ax∗, it holds that
x∗ solves

min
y

1
2
‖Ay −b‖22 +λ‖y‖1.

Definition (Dual Certificate)

The element w ∈ Rm satisfying

AT w ∈Sign(x∗)

is called dual certificate.
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What to construct?

Parameters to solve

min
y

1
2
‖Ay−b‖22+λ‖y‖1.

uniquely:

matrix A∈ Rm×n,

solution x∗ ∈ Rn,

index sets
I+ = {i : x∗i 
 0},
I− = {j : x∗j � 0},

dual certificate w ∈ Rm

satisfying
AT w ∈Sign(x∗).

Construction 1:

Given A, I+ and I−

Find w .

Choose x∗ and λ and construct
b =λw +Ax∗.

Construction 2:

Given A

Find w , I+ and I−.

Choose x∗ and λ and construct
b =λw +Ax∗.
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What to construct?

Parameters to solve

min
y

1
2
‖Ay−b‖22+λ‖y‖1.

uniquely:

matrix A∈ Rm×n,

solution x∗ ∈ Rn,

index sets
I+ = {i : x∗i 
 0},
I− = {j : x∗j � 0},

dual certificate w ∈ Rm

satisfying
AT w ∈Sign(x∗).

Construction 1:

Given A, I+ and I−

Find w .

Choose x∗ and λ and construct
b =λw +Ax∗.

Notation
Since I+ and I− are prescribed
before x∗ is chosen,

Sign(x∗)

is a synonym for I+ and I−.

Construction 2:

Given A

Find w , I+ and I−.

Choose x∗ and λ and construct
b =λw +Ax∗.
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Constructing instances for (QPλ)

Idea
For a given A∈ Rm×n and λ
 0 choose x∗ ∈ Rn and construct
b ∈ Rm.

Specify A∈ Rm×n, I and restricted sign-vector zI , |zi |= 1, i ∈ I.
Construct z ∈ Rn, |zj |� 1, j ∈ IC, and solve AT w = z.
Choose λ
 0 and x∗ according to z and set

b = λw +Ax∗.

Vector x∗ solves (BP) uniquely, x∗ = argminy ‖y‖1 s.t. Ay =Ax∗.
Vector x∗ solves (QPλ) uniquely,
x∗ = argminy

1
2‖Ay −b‖22 +λ‖y‖1.zu
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Constructing Dual Certificate

Method 1:
Find z ∈ rg(AT )∩Sign(x∗), solve AT w = z.
- by Alternating Projection,
- zj ≈±1, for some j ∈ IC.

Method 2:
minz ‖zIC‖22 s.t. z ∈ rg(AT )∩Sign(x∗).

Method 2.1:
minz ‖zIC‖22 s.t. z ∈ rg(AT )∩Sign(x∗), ‖zIC‖∞ 6 γ.

- Given γ∈ (0,1).
Method 3:
minz ‖PIC z‖∞ s.t. z ∈ rg(AT )∩Sign(x∗).
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Constructing Dual Certificate

Method 1:
Find z ∈ rg(AT )∩Sign(x∗), solve AT w = z.
- by Alternating Projection,
- zj ≈±1, for some j ∈ IC.

Test: matrix gaussian, size 100×200, solution gaussian, sparsity 10.
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Constructing Dual Certificate

Method 1:
Find z ∈ rg(AT )∩Sign(x∗), solve AT w = z.
- by Alternating Projection,
- zj ≈±1, for some j ∈ IC.

Method 2:
minz ‖zIC‖22 s.t. z ∈ rg(AT )∩Sign(x∗).
- Similar to Method 1.

Method 2.1:
minz ‖zIC‖22 s.t. z ∈ rg(AT )∩Sign(x∗), ‖zIC‖∞ 6 γ= 0.9.
- Might be infeasible, but ‖zIC‖∞ � 1, e.g.

A =

(
1 0.5 0
0 0.45 −1

)
, I+ = {1}, I− = {3}.

Decreasing γ

Method 3:
minz ‖zIC‖∞ s.t. z ∈ rg(AT )∩Sign(x∗).
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Constructing Dual Certificate

Method 3:
minz ‖zIC‖∞ s.t. z ∈ rg(AT )∩Sign(x∗)
- is equivalent to

min
w
‖AT

IC w‖∞ s.t. AT
I w = sign(x∗)I and[

AT
IC

−AT
IC

]
w 6

(
1IC

1IC

)
,

- is realizable as a Linear Program.
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Constructing Dual Certificate - Test

Tested Method: minw ‖AT
IC w‖∞ s.t. AT w ∈Sign(x∗)

A and x∗ chosen by L1TestPack
Used Parameter:

Gaussian distributed matrix with varying size,
Bernoulli matrix with varying size, entries =±1 randomly,

Partial DCT matrix, generated through uniform sampling of m rows
from the full Discrete Cosine Transform matrix.

Measured Values:

Error on Support, ‖AT
I w±1‖2,

Optimized value, ‖AT
IC w‖∞,

Time to solve the problem,
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Used Parameter:

Gaussian distributed matrix with varying size,
Bernoulli matrix with varying size, entries =±1 randomly,

Partial DCT matrix, generated through uniform sampling of m rows
from the full Discrete Cosine Transform matrix.

Measured Values:

Error on Support, ‖AT
I w±1‖2≈ 10−12,

Optimized value, ‖AT
IC w‖∞,

Time to solve the problem,
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Parameters to solve
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y

1
2
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solution x∗ ∈ Rn,

index sets
I+ = {i : x∗i 
 0},
I− = {j : x∗j � 0},

dual certificate w ∈ Rm
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AT w ∈Sign(x∗).

Construction 1:

Given A, I+ and I−

Find w .

Choose x∗ and λ and construct
b =λw +Ax∗.

Construction 2:

Given A

Find w , I+ and I−.

Choose x∗ and λ and construct
b =λw +Ax∗.
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What to construct?

Construction 2:

Given A

Find w , I+ and I−.

Choose x∗ and λ and construct b = λw +Ax∗.

Additional Goal:

Find index set I+∪ I− with largest possible cardinality.

→ any other cardinality 6 rank(A) chooseable
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Recoverable Indices

Definition
An index set I ⊂ {1, ...,n} is called recoverable for A∈ Rm×n, if
there exists x∗ ∈ Rn, I = supp(x∗), solving uniquely

min‖y‖1 s.t. Ay =Ax∗.

A recoverable index set I is called maximal, if there exists no
recoverable index set J satisfying |I |� |J |.

The index set I is recoverable if there exists w ∈ Rm satisfying

|aT
i w |= 1, for i ∈ I,

|aT
j w |� 1, for j ∈ IC,

AI is injective.
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A recoverable index set I is called maximal, if there exists no
recoverable index set J satisfying |I |� |J |.

The index set I is recoverable if there exists w ∈ Rm satisfying

|aT
i w |= 1, for i ∈ I,

|aT
j w |� 1, for j ∈ IC, Recov. index set I depends on A and w .

AI is injective.
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Recoverable Indices

Definition
An index set I ⊂ {1, ...,n} is called recoverable for A∈ Rm×n, if
there exists x∗ ∈ Rn, I = supp(x∗), solving uniquely

min‖y‖1 s.t. Ay =Ax∗.

A recoverable index set I is called maximal, if there exists no
recoverable index set J satisfying |I |� |J |.

The index set I is recoverable if there exists w ∈ Rm satisfying

|aT
i w |= 1, for i ∈ I,

|aT
j w |� 1, for j ∈ IC, Recov. index set I depends on A and w .

AI is injective. How to compute a maximal index set?
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Find Maximal Recoverable Index Set

R3

x
y

z

Unit Cube in R3

Cube = {(x,y,z) : |x |6
1, |y |6 1, |z|6 1}
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Find Maximal Recoverable Index Set

R3

x
y

z
[1,1,1]

[1,1,-1]

[-1,1,1]

[-1,1,-1]

[1,-1,-1]

[1,-1,1]

[-1,-1,1]

[-1,-1,-1]

Unit Cube in R3

Cube = {(x,y,z) : |x |6
1, |y |6 1, |z|6 1}
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Find Maximal Recoverable Index Set

R3
Range of AT

rg(AT ) = {z : ∃w :
AT w = z}
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Find Maximal Recoverable Index Set

R3 Intersection of Cube
and rg(AT )

∃z ∈Cube∩ rgAT
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Find Maximal Recoverable Index Set

R3 Intersection of Cube
and rg(AT )

∃z ∈Cube∩ rgAT

Recoverable Index
Sets: I = I+∪ I−

- I+ = {2}
- I+ = {2}, I− = {1}
- I+ = {1}
- I+ = {1,2}
- etcetera
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- I+ = {2}
- I+ = {2}, I− = {1}
- I+ = {1}
- I+ = {1,2}
- etcetera

May 20, 2012 Kruschel,
Lorenz

Constructing Test Instances for Sparse Recovery Algorithms Page 19



Find Maximal Recoverable Index Set

R3 Intersection of Cube
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- I+ = {2}
- I+ = {2}, I− = {1}
- I+ = {1}
- I+ = {1,2}
- etcetera

May 20, 2012 Kruschel,
Lorenz

Constructing Test Instances for Sparse Recovery Algorithms Page 19



Find Maximal Recoverable Index Set

R3 Intersection of Cube
and rg(AT )

∃z ∈Cube∩ rgAT

Recoverable Index
Sets: I = I+∪ I−

- I+ = {2}
- I+ = {2}, I− = {1}
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Find Maximal Recoverable Index Set

R3 Intersection of Cube
and rg(AT )

∃z ∈Cube∩ rgAT

Recoverable Index
Sets: I = I+∪ I−

- I+ = {2}
- I+ = {2}, I− = {1}
- I+ = {1}
- I+ = {1,2}
- etcetera
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Find Maximal Recoverable Index Set

R3

AT w(0)

Find Maximal Recoverable
Index Set:

Start at

w(0) = (0,0).
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Find Maximal Recoverable Index Set

R3

AT w(0)

Find Maximal Recoverable
Index Set:

Start at

w(0) = (0,0).

Find

j ∈ argmaxi ‖ai‖2.
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Find Maximal Recoverable Index Set

R3

AT w(0)

AT w(1)

Find Maximal Recoverable
Index Set:

Start at

w(0) = (0,0).

Find

j ∈ argmaxi ‖ai‖2.
Set w(1) := 1

‖aj‖2 aj

and I1 := {j}.
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Find Maximal Recoverable Index Set

R3

AT w(1)

Find Maximal Recoverable
Index Set:

Set w(1) := 1
‖aj‖2

2
aj

and I1 := {j}.
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Find Maximal Recoverable Index Set

R3

AT w(1)

Find Maximal Recoverable
Index Set:

Set w(1) := 1
‖aj‖2

2
aj

and I1 := {j}.

Choose

h1 ∈ kerAT
I1
\{0}.
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Find Maximal Recoverable Index Set

R3

AT w(1)

Find Maximal Recoverable
Index Set:

Set w(1) := 1
‖aj‖2

2
aj

and I1 := {j}.

Choose

h1 ∈ kerAT
I1
\{0}.

Find α∈ R such that

‖AT
IC
1
(w(1)+αh1)‖∞ = 1.
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Find Maximal Recoverable Index Set

R3

AT w(1) AT w(2)

Find Maximal Recoverable
Index Set:

Set w(1) := 1
‖aj‖2

2
aj

and I1 := {j}.

Choose

h1 ∈ kerAT
I1
\{0}.

Find α∈ R such that

‖AT
IC
1
(w(1)+αh1)‖∞ = 1.

Set w(2) :=w(1)+αh1

and I2 := {i : |w(2)
i |= 1}.
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Find Maximal Recoverable Index Set

R3

AT w(2)

Find Maximal Recoverable
Index Set:

Set w(2) :=w(1)+αh1

and I2 := {i : |w(2)
i |= 1}.
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Find Maximal Recoverable Index Set

R3

AT w(2)

Find Maximal Recoverable
Index Set:

Set w(2) :=w(1)+αh1

and I2 := {i : |w(2)
i |= 1}.

rank(AI2) = rank(A)
→ End Algorithm
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Find Maximal Recoverable Index Set

R3

AT w(2)

Find Maximal Recoverable
Index Set:

Set w(2) :=w(1)+αh1

and I2 := {i : |w(2)
i |= 1}.

rank(AI2) = rank(A)
→ End Algorithm

Set w :=w(2) and

I := I2.
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Find Maximal Recoverable Index Set

R3

AT w(2)

Find Maximal Recoverable
Index Set:

Set w(2) :=w(1)+αh1

and I2 := {i : |w(2)
i |= 1}.

rank(AI2) = rank(A)
→ End Algorithm

Set w :=w(2) and

I := I2.

The index set I = I+ = {1,2}
is a maximal recov. index
set.
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Find Maximal Recoverable Index Set

R3 Special Cases:

A=

(
−3 1 2
0 2 1

)
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Find Maximal Recoverable Index Set

R3 Special Cases:

A=

(
−3 1 2
0 2 1

)
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Find Maximal Recoverable Index Set

R3

AT w(0)

Special Cases:

A=

(
−3 1 2
0 2 1

)
Start at

w(0) = (0,0).
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Find Maximal Recoverable Index Set

R3

AT w(0)

Special Cases:

A=

(
−3 1 2
0 2 1

)
Start at

w(0) = (0,0).

Find

j ∈ argmaxi ‖ai‖2. It

is j = 1.
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Find Maximal Recoverable Index Set

R3

AT w(0)

AT w(1)

Special Cases:

A=

(
−3 1 2
0 2 1

)
Start at

w(0) = (0,0).

Find

j ∈ argmaxi ‖ai‖2. It

is j = 1.

Set w(1) = 1
‖a1‖2

2
AT a1,

I1 = {1}.
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Find Maximal Recoverable Index Set

R3

AT w(1)

Special Cases:

A=

(
−3 1 2
0 2 1

)
Set w(1) = 1

‖a1‖2
2
AT a1.

Choose h ∈ kerAT
I1
\{0}.

May 20, 2012 Kruschel,
Lorenz

Constructing Test Instances for Sparse Recovery Algorithms Page 20



Find Maximal Recoverable Index Set

R3

AT w(1)

Special Cases:

A=

(
−3 1 2
0 2 1

)
Set w(1) = 1

‖a1‖2
2
AT a1.

Choose h ∈ kerAT
I1
\{0}.

Find α∈ R s.t.

‖AT
IC
1
(w(1)+αh)‖∞ = 1

and set I2 = {i :
|aT

i (w
(1)+αh))|= 1}.
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Find Maximal Recoverable Index Set

R3

AT w(1)

Special Cases:

A=

(
−3 1 2
0 2 1

)
Set w(1) = 1

‖a1‖2
2
AT a1.

Choose h ∈ kerAT
I1
\{0}.

Find α∈ R s.t.

‖AT
IC
1
(w(1)+αh)‖∞ = 1

and set I2 = {i :
|aT

i (w
(1)+αh))|= 1}.

|I2|
 rank(AI2)
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Find Maximal Recoverable Index Set

R3

AT w(1)

Special Cases:

A=

(
−3 1 2
0 2 1

)
Set w(1) = 1

‖a1‖2
2
AT a1.

Choose h ∈ kerAT
I1
\{0}.

Find β 6=α s.t.

‖AT
IC
1
(w(1)+βh)‖∞ = 1

and set I3 = {i :
|aT

i (w
(1)+βh))|= 1}.
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Find Maximal Recoverable Index Set

R3

AT w(1)

Special Cases:

A=

(
−3 1 2
0 2 1

)
Set w(1) = 1

‖a1‖2
2
AT a1.

Choose h ∈ kerAT
I1
\{0}.

Find β 6=α s.t.

‖AT
IC
1
(w(1)+βh)‖∞ = 1

and set I3 = {i :
|aT

i (w
(1)+βh))|= 1}.

rank(AI3) = rank(A)
→ Stop Algorithm
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Find Maximal Recoverable Index Set

R3

AT w(1)

AT w

Special Cases:

A=

(
−3 1 2
0 2 1

)
Set w :=w(1)+αh and
I := I3.
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Find Maximal Recoverable Index Set

R3

AT w

Special Cases:

A=

(
−3 1 2
0 2 1

)
Set w :=w(1)+αh and
I := I3.

The index set I = I+ = {1,2}
is the maximal recov. index
set.

Special Case 2
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Find Maximal Recoverable Index Set - Test

Used Parameter:

Gaussian distributed matrix with varying size,

Bernoulli matrix with varying size, entries =±1 randomly,

Partial DCT matrix, generated through uniform sampling of m rows
from the full Discrete Cosine Transform matrix.

Measured Values:

Time to get an index set

Value ‖AT
IC w‖∞
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Find Maximal Recoverable Index Set - Test
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Find Maximal Recoverable Index Set - Test

m ‖AT
IC w‖∞

100 0.994
200 0.997
300 0.987
400 0.993
500 0.992
600 0.984
700 0.99993
800 0.935
900 0.945

Bernoulli matrix
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Conclusion

One can find test instances for Basis Pursuit / Basis Pursuit
Denoising with prescribed sign

Dual certificate detectable by linear programming or alternating
projections

Found maximal recoverable index set
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Future Work

Construction 3:

Given w , I+, and I−

Find A.

Choose x∗ and λ and construct b = λw +Ax∗.

Dual certificate w ∼N (0,1) could be noise to the right side Ax∗.
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Thank You For Your Attention
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Constructing Dual Certificate

Method 2.1:
minz ‖PIC z‖22 s.t. z ∈ rg(AT )∩Sign(x∗), ‖PIC z‖∞ 6 γ.
- Given γ∈ [0,1].

γ= 1.0

Test: matrix gaussian, size 100×200, sparsity 10. Back
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Constructing Dual Certificate

Method 2.1:
minz ‖PIC z‖22 s.t. z ∈ rg(AT )∩Sign(x∗), ‖PIC z‖∞ 6 γ.
- Given γ∈ [0,1].

γ= 0.9

Test: matrix gaussian, size 100×200, sparsity 10. Back
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Constructing Dual Certificate

Method 2.1:
minz ‖PIC z‖22 s.t. z ∈ rg(AT )∩Sign(x∗), ‖PIC z‖∞ 6 γ.
- Given γ∈ [0,1].

γ= 0.8

Test: matrix gaussian, size 100×200, sparsity 10. Back
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Constructing Dual Certificate

Method 2.1:
minz ‖PIC z‖22 s.t. z ∈ rg(AT )∩Sign(x∗), ‖PIC z‖∞ 6 γ.
- Given γ∈ [0,1].

γ= 0.7

Test: matrix gaussian, size 100×200, sparsity 10. Back
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Constructing Dual Certificate

Method 2.1:
minz ‖PIC z‖22 s.t. z ∈ rg(AT )∩Sign(x∗), ‖PIC z‖∞ 6 γ.
- Given γ∈ [0,1].

γ= 0.6

Test: matrix gaussian, size 100×200, sparsity 10. Back
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Find Maximal Recoverable Index Set

R3 Special Cases:

A=

(
1 0 −1
2 −3 −2

)
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Find Maximal Recoverable Index Set

AT w(0)

AT w(1)

R3 Special Cases:

A=

(
1 0 −1
2 −3 −2

)
w(1) = (0,−1

3)
T , I1 = {2}
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Find Maximal Recoverable Index Set

AT w(1)

R3 Special Cases:

A=

(
1 0 −1
2 −3 −2

)
Next possible support
I2 = [−1,1,1] leads to
AI2 not injective

May 20, 2012 Kruschel,
Lorenz

Constructing Test Instances for Sparse Recovery Algorithms Page 27



Find Maximal Recoverable Index Set

AT w(1)

R3 Special Cases:

A=

(
1 0 −1
2 −3 −2

)
Next possible support
I3 = [1,1,−1] leads to
AI3 not injective
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Find Maximal Recoverable Index Set

AT w(1)

R3 Special Cases:

A=

(
1 0 −1
2 −3 −2

)
Choose one of these
supports
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Find Maximal Recoverable Index Set

R3 Special Cases:

A=

(
1 0 −1
2 −3 −2

)
Support I4 = [−1,0,1] is
a maximal rec. support

Back
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Find Maximal Recoverable Index Set

AT w
R3 Special Cases:

A=

(
1 0 −1
2 −3 −2

)
Support I4 = [−1,0,1] is
a maximal rec. support

Back
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Consider x = (x1, ...,xn)
T ∈ Rn,p ∈N\{0}

‖x‖pp :=
n∑

i=1

|xi |
p.

Example:

‖x‖1 =
n∑

i=1

|xi |,

‖x‖2 =

√√√√ n∑
i=1

|xi |
2.

Back
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