

Constructing Test Instances for Sparse Recovery Algorithms

Christian Kruschel and Dirk Lorenz, May 20, 2012

SPEAR -Sparse Exact and Approximate Recovery

TU Braunschweig

Dirk Lorenz

TU Darmstadt Analysis and Algebra Discrete Optimization

Marc Pfetsch

Andreas Tillmann Christian Kruschel

Project period: 2011-2014

Homepage: http://www.math.nat.tu-bs.de/mo/spear

Minimization Problems for Sparse Recovery

We consider $A \in \mathbb{R}^{m \times n}$, $m \leq n, b \in \mathbb{R}^m$ and

$$\min_{y} \|y\|_1 \text{ s.t. } Ay = b,$$

further for $\lambda \diamondsuit 0$ its denoising variant

$$\min_{y} \frac{1}{2} \|Ay - b\|_{2}^{2} + \lambda \|y\|_{1}, \qquad (QP_{\lambda})$$

with

$$\|\boldsymbol{y}\|_{\boldsymbol{\rho}}^{\boldsymbol{\rho}} := \sum_{i=1}^{n} |y_i|^{\boldsymbol{\rho}}, \boldsymbol{\rho} \in \mathbb{N} \setminus \{0\}.$$

Norm Description

(BP)

For (BP):

SPGL1 How to compare

2

- NESTA
- YALL1
- ISAL1
- ...

For (QP $_{\lambda}$):

- ISTA
- FISTA
- SparSA
- FPC
- ...

For (BP):

- SPGL1 How to comp
- NESTA
- YALL1
- ISAL1
- ...

For (QP $_{\lambda}$):

- ISTA
- FISTA
- SparSA
- FPC

www.tu-braunschweig.de/iaa/personal/lorenz/l1testpack

• ...

How to compare (e.g. in Matlab)? L1TestPack generates test instances for (QP_{λ}) .

For (BP):

- SPGL1
- NESTA
- YALL1
- ISAL1
- ...

For (QP_{λ}) :

- ISTA
- FISTA
- SparSA
- FPC
- ...

How to compare (e.g. in Matlab) ? L1TestPack generates test instances for (QP_{λ}) .

- matrix A can be gaussian, bernoulli, partial DCT, heaviside, random orthonormal rows
- solution x* can be chosen gaussian, bernoulli, different dynamic ranges.
- number of non-zero entries in x^* eligible.
- right side b will be calculated (we'll see later...)

For (BP):

- SPGL1
- NESTA
- YALL1
- ISAL1
- ...

For (QP_{λ}) :

- ISTA
- FISTA
- SparSA
- FPC
- ...

How to compare (e.g. in Matlab) ? L1TestPack generates test instances for (QP_{λ}) .

- matrix A can be gaussian, bernoulli, partial DCT, heaviside, random orthonormal rows
- solution x* can be chosen gaussian, bernoulli, different dynamic ranges.
- number of non-zero entries in x^* eligible.
- right side b will be calculated (we'll see later...)

For (BP):

- SPGL1
- NESTA
- YALL1
- ISAL1
- ...

For (QP_{λ}) :

- ISTA
- FISTA
- SparSA
- FPC
- ...

How to compare (e.g. in Matlab) ? L1TestPack generates test instances for (QP_{λ}) .

- matrix A can be gaussian, bernoulli, partial DCT, heaviside, random orthonormal rows
- solution x* can be chosen gaussian, bernoulli, different dynamic ranges.
- number of non-zero entries in x* eligible.
- right side b will be calculated (we'll see later...)

For (BP):

- SPGL1
- NESTA
- YALL1
- ISAL1
- ...

For (QP_{λ}) :

- ISTA
- FISTA
- SparSA
- FPC
- ...

How to compare (e.g. in Matlab) ? L1TestPack generates test instances for (QP_{λ}) .

- matrix A can be gaussian, bernoulli, partial DCT, heaviside, random orthonormal rows
- solution x* can be chosen gaussian, bernoulli, different dynamic ranges.
- number of non-zero entries in *x*^{*} eligible.
- right side b will be calculated (we'll see later...)

For (BP):

- SPGL1
- NESTA
- YALL1
- ISAL1
- ...

For (QP_{λ}) :

- ISTA
- FISTA
- SparSA
- FPC
- ...

How to construct test instances?

Sufficient and Necessary Condition for (BP)

Theorem

Let $A = [a_1, ..., a_n] \in \mathbb{R}^{m \times n}$, $x^* \in \mathbb{R}^n$ and $I = supp(x^*)$. x^* solves

 $\min \|y\|_1 \ s.t. \ Ay = Ax^*$

uniquely if and only if A_I is injective and there exists $w \in \mathbb{R}^m$

 $\begin{array}{ll} a_i^T w = sign(x_i^*), & \quad \text{for } x_i^* \neq 0 \text{ resp. } i \in I, \\ |a_j^T w| \lneq 1, & \quad \text{for } x_j^* = 0 \text{ resp. } j \in I^C. \end{array}$

Notation

For a given $x^* \in \mathbb{R}^n$ we will denote $I \subset \{1, ..., n\}$ as the support of x^* , hence $I := supp(x^*) = \{i : x_i^* \neq 0\}$. I^C is the complement of I.

Technische Universität Braunschweig

Lemma (Fuchs, 2004)

The vector x^* is a unique solution of (QP_{λ}) if

$$a_i^T(b-Ax^*) = \lambda sign(x_i^*), \text{ for } x_i^* \neq 0,$$

 $|a_j^T(b-Ax^*)| \leq \lambda, \text{ for } x_j^* = 0, \text{ and}$
 $A_l \text{ injective}$

holds.

Lemma (Fuchs, 2004)

The vector x^* is a solution of (QP_{λ}) if and only if

$$a_i^T(b - Ax^*) = \lambda sign(x_i^*), \text{ for } x_i^* \neq 0,$$
$$|a_j^T(b - Ax^*)| \leq \lambda, \text{ for } x_j^* = 0$$

holds.

$$\begin{split} \text{Sign}(x^*)_i &= \text{sign}(x^*_i) \text{ if } x^*_i \neq 0\\ \text{Sign}(x^*)_j &\in [-1, 1] \text{ if } x^*_j = 0 \end{split}$$

May 20, 2012 Kruschel, Constructing Test Instances for Sparse Recovery Algorithms Page 6 Lorenz

Lemma (Fuchs, 2004)

The vector x^* is a solution of (QP_{λ}) if and only if

 $A^{T}(b - Ax^{*}) \in \lambda Sign(x^{*})$

holds.

$$\begin{aligned} \text{Sign}(x^*)_i &= \text{sign}(x^*_i) \text{ if } x^*_i \neq 0\\ \text{Sign}(x^*)_j &\in [-1,1] \text{ if } x^*_j = 0 \end{aligned}$$

May 20, 2012 Kruschel, Constructing Test Instances for Sparse Recovery Algorithms Page 6 Lorenz

Lemma

The vector x^* is a solution of (QP_{λ}) if and only if

 $A^{T}(b-Ax^{*}) \in \lambda Sign(x^{*})$

holds.

Idea

For a given A and $\lambda \ge 0$, choose x^* and construct b.

Constructing instances for (QP $_{\lambda}$)

Theorem (Lorenz, 2011)

Let $A \in \mathbb{R}^{m \times n}$, $\lambda \ge 0$, $x^* \in \mathbb{R}^n$ and $z \in rg(A^T) \cap Sign(x^*)$. Then for any w such that $A^T w = z$ and $b = \lambda w + Ax^*$, it holds that x^* solves

$$\min_{y} \frac{1}{2} \|Ay - b\|_{2}^{2} + \lambda \|y\|_{1}.$$

Proof.

$$A^{T}(b - Ax^{*}) = A^{T}(\lambda w + Ax^{*} - Ax^{*}) = \lambda A^{T}w \in \lambda \text{Sign}(x^{*})$$

Constructing instances for (QP_{λ})

Theorem (Lorenz, 2011)

Let $A \in \mathbb{R}^{m \times n}$, $\lambda \ge 0$, $x^* \in \mathbb{R}^n$ and $z \in rg(A^T) \cap Sign(x^*)$. Then for any w such that $A^T w = z$ and $b = \lambda w + Ax^*$, it holds that x^* solves

$$\min_{y} \frac{1}{2} \|Ay - b\|_{2}^{2} + \lambda \|y\|_{1}.$$

Definition (Dual Certificate)

The element $w \in \mathbb{R}^m$ satisfying

 $A^T w \in \operatorname{Sign}(x^*)$

is called **dual certificate**.

Technische Universität Braunschweig

Parameters to solve

$$\min_{y} \frac{1}{2} \|Ay - b\|_{2}^{2} + \lambda \|y\|_{1}.$$

uniquely:

- matrix $A \in \mathbb{R}^{m \times n}$,
- solution $x^* \in \mathbb{R}^n$,
- index sets
 - $I^{+} = \{i : x_{i}^{*} \ge 0\}, \\ I^{-} = \{j : x_{j}^{*} \le 0\},$
- dual certificate w ∈ ℝ^m satisfying

Technische Universität Braunschweig

Parameters to solve

$$\min_{y} \frac{1}{2} \|Ay - b\|_{2}^{2} + \lambda \|y\|_{1}.$$

uniquely:

- matrix $A \in \mathbb{R}^{m \times n}$,
- solution $x^* \in \mathbb{R}^n$,
- index sets

$$\begin{split} I^+ = & \{i : x_j^* \geqq 0\}, \\ I^- = & \{j : x_j^* \leqq 0\}, \end{split}$$

 dual certificate w ∈ ℝ^m satisfying A^T w ∈ Sign(x*).

Technische Universität May Braunschweig Construction 1:

- Given A, I⁺ and I⁻
- Find w.
- Choose x^* and λ and construct $b = \lambda w + Ax^*$.

Parameters to solve

$$\min_{y} \frac{1}{2} \|Ay - b\|_{2}^{2} + \lambda \|y\|_{1}.$$

uniquely:

- matrix $A \in \mathbb{R}^{m \times n}$,
- solution $x^* \in \mathbb{R}^n$,
- index sets

$$\begin{split} I^+ = & \{i : x_j^* \geqq 0\}, \\ I^- = & \{j : x_j^* \leqq 0\}, \end{split}$$

 dual certificate w ∈ ℝ^m satisfying A^T w ∈ Sign(x*).

Technische Universität Braunschweig Construction 1:

- Given A, I⁺ and I⁻
- Find w.
- Choose x^* and λ and construct $b = \lambda w + Ax^*$.

Notation

Since I^+ and I^- are prescribed before x^* is chosen,

 $Sign(x^*)$

is a synonym for I^+ and I^- .

Parameters to solve

$$\min_{y} \frac{1}{2} \|Ay - b\|_{2}^{2} + \lambda \|y\|_{1}.$$

uniquely:

- matrix $A \in \mathbb{R}^{m \times n}$,
- solution $x^* \in \mathbb{R}^n$,
- index sets
 - $I^{+} = \{i : x_{i}^{*} \ge 0\}, \\ I^{-} = \{j : x_{j}^{*} \le 0\},$
- dual certificate w ∈ ℝ^m satisfying

Technische Universität Braunschweig Construction 1:

- Given A, I⁺ and I⁻
- Find w.
- Choose x^* and λ and construct $b = \lambda w + Ax^*$.

Construction 2:

- Given A
- Find w, I^+ and I^- .
- Choose x^* and λ and construct $b = \lambda w + Ax^*$.

Table of contents

Parameters to solve

$$\min_{y} \frac{1}{2} \|Ay - b\|_{2}^{2} + \lambda \|y\|_{1}.$$

uniquely:

- matrix $A \in \mathbb{R}^{m \times n}$,
- solution $x^* \in \mathbb{R}^n$,
- index sets
 - $I^{+} = \{i : x_{i}^{*} \ge 0\}, \\ I^{-} = \{j : x_{j}^{*} \le 0\},$
- dual certificate w ∈ ℝ^m satisfying

Technische Universität May 20, Braunschweig

May 20, 2012 | Kruschel, | Constructing Test Instances for Sparse Recovery Algorithms | Page 9 Lorenz

Construction 1:

- Given A, I⁺ and I⁻
- Find w.
- Choose x* and λ and construct
 b = λw + Ax*.

Construction 2:

- Given A
- Find w, I^+ and I^- .
- Choose x^* and λ and construct $b = \lambda w + Ax^*$.

Constructing instances for (QP_{λ})

Idea

For a given $A \in \mathbb{R}^{m \times n}$ and $\lambda \ge 0$ choose $x^* \in \mathbb{R}^n$ and construct $b \in \mathbb{R}^m$.

- Specify $A \in \mathbb{R}^{m \times n}$, *I* and restricted sign-vector z_I , $|z_i| = 1$, $i \in I$.
- Construct $z \in \mathbb{R}^n$, $|z_j| \leq 1, j \in I^C$, and solve $A^T w = z$.
- Choose $\lambda \ge 0$ and x^* according to z and set

 $b = \lambda w + Ax^*$.

• Vector x^* solves (BP) uniquely, $x^* = \arg \min_y ||y||_1$ s.t. $Ay = Ax^*$.

• Vector x^* solves (QP_{λ}) uniquely, $x^* = \arg \min_y \frac{1}{2} ||Ay - b||_2^2 + \lambda ||y||_1$.zu

Constructing instances for (QP $_{\lambda}$)

Idea

For a given $A \in \mathbb{R}^{m \times n}$ and $\lambda \ge 0$ choose $x^* \in \mathbb{R}^n$ and construct $b \in \mathbb{R}^m$.

- Specify $A \in \mathbb{R}^{m \times n}$, *I* and restricted sign-vector z_I , $|z_i| = 1$, $i \in I$.
- Construct $z \in \mathbb{R}^n$, $|z_j| \leq 1, j \in I^C$, and solve $A^T w = z$.
- Choose $\lambda \ge 0$ and x^* according to z and set

 $b = \lambda w + Ax^*$.

- Vector x^* solves (BP) uniquely, $x^* = \arg \min_y ||y||_1$ s.t. $Ay = Ax^*$.
- Vector x^* solves (QP_{λ}) uniquely, $x^* = \arg\min_y \frac{1}{2} ||Ay - b||_2^2 + \lambda ||y||_1.zu$

Constructing instances for (QP_λ)

Idea

For a given $A \in \mathbb{R}^{m \times n}$ and $\lambda \ge 0$ choose $x^* \in \mathbb{R}^n$ and construct $b \in \mathbb{R}^m$.

- Specify $A \in \mathbb{R}^{m \times n}$, *I* and restricted sign-vector z_I , $|z_i| = 1$, $i \in I$.
- Construct $z \in \mathbb{R}^n$, $|z_j| \leq 1, j \in I^C$, and solve $A^T w = z$.
- Choose $\lambda \ge 0$ and x^* according to z and set

 $b = \lambda w + Ax^*$.

- Vector x^* solves (BP) uniquely, $x^* = \arg \min_y ||y||_1$ s.t. $Ay = Ax^*$.
- Vector x^* solves (QP_{λ}) uniquely, $x^* = \arg \min_y \frac{1}{2} ||Ay - b||_2^2 + \lambda ||y||_1.zu$

Method 1:

Find $z \in \operatorname{rg}(A^T) \cap \operatorname{Sign}(x^*)$, solve $A^T w = z$.

- by Alternating Projection,
- $z_j pprox \pm 1$, for some $j \in I^C$.
- Method 2: $\min_{z} ||z_{l^{c}}||_{2}^{2}$ s.t. $z \in \operatorname{rg}(A^{T}) \cap \operatorname{Sign}(x^{*})$.

Method 1:

Find $z \in \operatorname{rg}(A^T) \cap \operatorname{Sign}(x^*)$, solve $A^T w = z$.

- by Alternating Projection,
- $z_j \approx \pm 1$, for some $j \in I^C$.

Test: matrix gaussian, size 100×200 , solution gaussian, sparsity 10.

May 20, 2012 Kruschel, Constructing Test Instances for Sparse Recovery Algorithms Page 11 Lorenz

Method 1:

Find $z \in \operatorname{rg}(A^T) \cap \operatorname{Sign}(x^*)$, solve $A^T w = z$.

- by Alternating Projection,
- $z_j \approx \pm 1$, for some $j \in I^C$.
- Method 2:

 $\overline{\min_{z} \|z_{I^{\mathcal{C}}}\|_{2}^{2}} \text{ s.t. } z \in \operatorname{rg}(A^{\mathcal{T}}) \cap \operatorname{Sign}(x^{*}).$

Method 1:

Find $z \in \operatorname{rg}(A^T) \cap \operatorname{Sign}(x^*)$, solve $A^T w = z$.

- by Alternating Projection,
- $z_j \approx \pm 1$, for some $j \in I^C$.
- Method 2:

 $\overline{\min_{z} \|z_{I^{\mathcal{C}}}\|_{2}^{2}} \text{ s.t. } z \in \operatorname{rg}(A^{\mathcal{T}}) \cap \operatorname{Sign}(x^{*}).$

- Same z as in Method 1. (see Deutsch (2001))

Method 1:

Find $z \in \operatorname{rg}(A^T) \cap \operatorname{Sign}(x^*)$, solve $A^T w = z$.

- by Alternating Projection,
- $z_j \approx \pm 1$, for some $j \in I^C$.
- Method 2:

 $\overline{\min_{z} \|z_{I^{c}}\|_{2}^{2}} \operatorname{s.t.} z \in \operatorname{rg}(A^{T}) \cap \operatorname{Sign}(x^{*}).$

- Same z as in Method 1. (see Deutsch (2001))

■ <u>Method 2.1</u>: $\min_{Z} \|z_{IC}\|_{2}^{2}$ s.t. $z \in \operatorname{rg}(A^{T}) \cap \operatorname{Sign}(x^{*}), \|z_{IC}\|_{\infty} \leq \gamma.$ - Given $\gamma \in (0, 1)$.

Method 1:

Find $z \in \operatorname{rg}(A^T) \cap \operatorname{Sign}(x^*)$, solve $A^T w = z$.

- by Alternating Projection,
- $z_j \approx \pm 1$, for some $j \in I^C$.
- Method 2:
 - $\overline{\min_{z} \|z_{I^{C}}\|_{2}^{2}} \text{ s.t. } z \in \operatorname{rg}(A^{T}) \cap \operatorname{Sign}(x^{*}).$
 - Similar to Method 1.
- Method 2.1:
 - $\overline{\min_{z} \|z_{lc}\|_{2}^{2}} \text{ s.t. } z \in \operatorname{rg}(A^{T}) \cap \operatorname{Sign}(x^{*}), \|z_{lc}\|_{\infty} \leq \gamma = 0.9.$
 - Might be infeasible, but $||z_{IC}||_{\infty} \leq 1$, e.g.

$$A = \begin{pmatrix} 1 & 0.5 & 0 \\ 0 & 0.45 & -1 \end{pmatrix}, I^{+} = \{1\}, I^{-} = \{3\}.$$

			1010	

Method 1:

Find $z \in \operatorname{rg}(A^T) \cap \operatorname{Sign}(x^*)$, solve $A^T w = z$.

- by Alternating Projection,
- $z_j \approx \pm 1$, for some $j \in I^C$.
- Method 2:

 $\overline{\min_{z} \|z_{I^{\mathcal{C}}}\|_{2}^{2}} \text{ s.t. } z \in \operatorname{rg}(A^{\mathcal{T}}) \cap \operatorname{Sign}(x^{*}).$

- Similar to Method 1.
- Method 2.1:

 $\overline{\min_{z} \|z_{I^{\mathcal{C}}}\|_{2}^{2}} \text{ s.t. } z \in \operatorname{rg}(A^{T}) \cap \operatorname{Sign}(x^{*}), \ \|z_{I^{\mathcal{C}}}\|_{\infty} \leqslant \gamma = 0.9.$

- Might be infeasible, but $||z_{IC}||_{\infty} \leq 1$.
- Method 3: $\min_{z} ||z_{l^{C}}||_{\infty}$ s.t. $z \in \operatorname{rg}(A^{T}) \cap \operatorname{Sign}(x^{*})$.

Method 3:

 $\overline{\min_{z} \|z_{I^{\mathcal{C}}}\|_{\infty}} \text{ s.t. } z \in \operatorname{rg}(A^{\mathcal{T}}) \cap \operatorname{Sign}(x^{*})$

- is equivalent to

$$\min_{W} \|A_{IC}^{T} w\|_{\infty} \text{ s.t. } A_{I}^{T} w = \operatorname{sign}(x^{*})_{I} \text{ and}$$
$$\begin{bmatrix} A_{IC}^{T} \\ -A_{IC}^{T} \end{bmatrix} w \leq \begin{pmatrix} \mathbf{1}_{IC} \\ \mathbf{1}_{IC} \end{pmatrix}$$

- is realizable as a Linear Program.

<u>Tested Method</u>: $\min_{w} \|A_{l^{C}}^{T}w\|_{\infty}$ s.t. $A^{T}w \in \text{Sign}(x^{*})$

A and x^* chosen by L1TestPack

Used Parameter:

- Gaussian distributed matrix with varying size,
- Bernoulli matrix with varying size, entries $=\pm 1$ randomly,
- Partial DCT matrix, generated through uniform sampling of *m* rows from the full Discrete Cosine Transform matrix.

Measured Values:

- Error on Support, $||A_I^T w \pm 1||_2$,
- Optimized value, $\|A_{I^{C}}^{T}w\|_{\infty}$,
- Time to solve the problem,

<u>Tested Method</u>: $\min_{w} \|A_{l^{C}}^{T}w\|_{\infty}$ s.t. $A^{T}w \in \text{Sign}(x^{*})$

A and x^* chosen by L1TestPack

Used Parameter:

- Gaussian distributed matrix with varying size,
- Bernoulli matrix with varying size, entries $=\pm 1$ randomly,
- Partial DCT matrix, generated through uniform sampling of *m* rows from the full Discrete Cosine Transform matrix.

Measured Values:

- Error on Support, $\|A_I^T w \pm 1\|_2 \approx 10^{-12}$,
- Optimized value, $\|A_{I^{C}}^{T}w\|_{\infty}$,
- Time to solve the problem,

Constructing Dual Certificate - Test

Constructing Dual Certificate - Test

Constructing Dual Certificate - Test

Constructing Dual Certificate - Test

Table of contents

Parameters to solve

$$\min_{y} \frac{1}{2} \|Ay - b\|_{2}^{2} + \lambda \|y\|_{1}.$$

uniquely:

- matrix $A \in \mathbb{R}^{m \times n}$,
- solution $x^* \in \mathbb{R}^n$,
- index sets
 - $I^{+} = \{i : x_{i}^{*} \ge 0\}, \\ I^{-} = \{j : x_{j}^{*} \le 0\},$
- dual certificate w ∈ ℝ^m satisfying

 $A^T w \in \operatorname{Sign}(x^*).$

Technische Universität Braunschweig Construction 1:

- Given A, I⁺ and I⁻
- Find w.
- Choose x^* and λ and construct $b = \lambda w + Ax^*$.

Construction 2:

- Given A
- Find w, I^+ and I^- .
- Choose x^* and λ and construct $b = \lambda w + Ax^*$.

Construction 2:

- Given A
- Find w, I^+ and I^- .
- Choose x^* and λ and construct $b = \lambda w + Ax^*$.

Additional Goal:

Find index set $I^+ \cup I^-$ with largest possible cardinality.

Construction 2:

- Given A
- Find w, I^+ and I^- .
- Choose x^* and λ and construct $b = \lambda w + Ax^*$.

Additional Goal:

Find index set $I^+ \cup I^-$ with largest possible cardinality. \rightarrow any other cardinality \leq rank(A) chooseable

Definition

An index set $I \subset \{1, ..., n\}$ is called **recoverable** for $A \in \mathbb{R}^{m \times n}$, if there exists $x^* \in \mathbb{R}^n$, $I = \text{supp}(x^*)$, solving uniquely

 $\min \|y\|_1$ s.t. $Ay = Ax^*$.

A recoverable index set *I* is called **maximal**, if there exists no recoverable index set *J* satisfying $|I| \leq |J|$.

The index set *I* is recoverable if there exists $w \in \mathbb{R}^m$ satisfying

 $a_i^T w| = 1$, for $i \in I$, $a_j^T w| \lneq 1$, for $j \in I^C$,

A_l is injective.

Definition

An index set $I \subset \{1, ..., n\}$ is called **recoverable** for $A \in \mathbb{R}^{m \times n}$, if there exists $x^* \in \mathbb{R}^n$, $I = \text{supp}(x^*)$, solving uniquely

 $\min \|y\|_1$ s.t. $Ay = Ax^*$.

A recoverable index set *I* is called **maximal**, if there exists no recoverable index set *J* satisfying $|I| \leq |J|$.

The index set *I* is recoverable if there exists $w \in \mathbb{R}^m$ satisfying

$$|a_i^T w| = 1$$
, for $i \in I$,
 $|a_j^T w| \leq 1$, for $j \in I^C$,

A_l is injective.

Definition

An index set $I \subset \{1, ..., n\}$ is called **recoverable** for $A \in \mathbb{R}^{m \times n}$, if there exists $x^* \in \mathbb{R}^n$, $I = \text{supp}(x^*)$, solving uniquely

 $\min \|y\|_1$ s.t. $Ay = Ax^*$.

A recoverable index set *I* is called **maximal**, if there exists no recoverable index set *J* satisfying $|I| \leq |J|$.

The index set *I* is recoverable if there exists $w \in \mathbb{R}^m$ satisfying

$$|a_i^T w| = 1$$
, for $i \in I$,
 $|a_j^T w| \leq 1$, for $j \in I^C$, Recov. index set *I* depends on *A* and *w*.

Technische Universität Braunschweig

Definition

An index set $I \subset \{1, ..., n\}$ is called **recoverable** for $A \in \mathbb{R}^{m \times n}$, if there exists $x^* \in \mathbb{R}^n$, $I = \text{supp}(x^*)$, solving uniquely

 $\min \|y\|_1$ s.t. $Ay = Ax^*$.

A recoverable index set *I* is called **maximal**, if there exists no recoverable index set *J* satisfying $|I| \leq |J|$.

The index set *I* is recoverable if there exists $w \in \mathbb{R}^m$ satisfying

$$|a_i^T w| = 1$$
, for $i \in I$,
 $|a_j^T w| \leq 1$, for $j \in I^C$, Recov. index set *I* depends on *A* and *w*.
A_I is injective. How to compute a maximal index set?

• Unit Cube in \mathbb{R}^3

• Cube =
$$\{(x, y, z) : |x| \le 1, |y| \le 1, |z| \le 1\}$$

May 20, 2012 Kruschel, Constructing Test Instances for Sparse Recovery Algorithms Page 19 Lorenz

Range of A^T

•
$$\operatorname{rg}(A^T) = \{z : \exists w : A^T w = z\}$$

 Intersection of Cube and rg(A^T)

•
$$\exists z \in \text{Cube} \cap \text{rg}A^T$$

- Intersection of Cube and rg(A^T)
- $\exists z \in \text{Cube} \cap \text{rg}A^T$
- Recoverable Index Sets: *I* = *I*⁺ ∪ *I*⁻
 - $I^+ = \{2\}$
 - $I^+ = \{2\}, I^- = \{1\}$
 - $I^+ = \{1\}$
 - $I^+ = \{1, 2\}$
 - etcetera

- Intersection of Cube and rg(A^T)
- $\exists z \in \text{Cube} \cap \text{rg}A^T$
- Recoverable Index Sets: I = I⁺ ∪ I⁻

-
$$I^+ = \{2\}$$

- $I^+ = \{2\}, I^- = \{1\}$
- $I^+ = \{1\}$

-
$$I^+ = \{1, 2\}$$

- Intersection of Cube and rg(A^T)
- $\exists z \in \text{Cube} \cap \text{rg}A^T$
- Recoverable Index Sets: *I* = *I*⁺ ∪ *I*⁻

-
$$I^+ = \{2\}$$

- $I^+ = \{2\}, I^- = \{1\}$

-
$$I^+ = \{1\}$$

-
$$I^+ = \{1, 2\}$$

- Intersection of Cube and rg(A^T)
- $\exists z \in \text{Cube} \cap \text{rg}A^T$
- Recoverable Index Sets: *I* = *I*⁺ ∪ *I*⁻

- $I^+ = \{2\}, I^- = \{1\}$

-
$$I^+ = \{1, 2\}$$

- Intersection of Cube and rg(A^T)
- $\exists z \in \text{Cube} \cap \text{rg}A^T$
- Recoverable Index Sets: *I* = *I*⁺ ∪ *I*⁻
 - *I*⁺ ={2}
 - $I^+ = \{2\}, I^- = \{1\}$
 - $I^+ = \{1\}$

• Start at
$$w^{(0)} = (0,0).$$

- Start at $w^{(0)} = (0,0).$
- Find $j \in \operatorname{argmax}_{i} ||a_{i}||_{2}$.

- Start at $w^{(0)} = (0,0).$
- Find $j \in \operatorname{argmax}_{i} ||a_{i}||_{2}$.

• Set
$$w^{(1)} := \frac{1}{\|a_j\|^2} a_j$$

and $l_1 := \{j\}.$

• Set
$$w^{(1)} := \frac{1}{\|a_j\|_2^2} a_j$$

and $l_1 := \{j\}.$

• Set
$$w^{(1)} := \frac{1}{\|a_j\|_2^2} a_j$$

and $l_1 := \{j\}.$

• Choose
$$h_1 \in \ker A_{l_1}^T \setminus \{0\}.$$

Find Maximal Recoverable Index Set:

• Set
$$w^{(1)} := \frac{1}{\|a_j\|_2^2} a_j$$

and $I_1 := \{j\}.$

• Choose
$$h_1 \in \texttt{ker} A_{l_1}^T \setminus \{0\}$$

• Find $\alpha \in \mathbb{R}$ such that $\|A_{l_1^{\tau}}^T(w^{(1)}+\alpha h_1)\|_{\infty}=1.$

Find Maximal Recoverable Index Set:

• Set
$$w^{(1)} := \frac{1}{\|a_j\|_2^2} a_j$$

and $I_1 := \{j\}.$

• Choose
$$h_1 \in \ker A_{l_1}^T \setminus \{0\}$$

• Find $\alpha \in \mathbb{R}$ such that $\|A_{J_{1}^{c}}^{T}(w^{(1)}+\alpha h_{1})\|_{\infty}=1.$

• Set
$$w^{(2)} := w^{(1)} + \alpha h_1$$

and $l_2 := \{i : |w_i^{(2)}| = 1\}.$

Find Maximal Recoverable Index Set:

• Set $w^{(2)} := w^{(1)} + \alpha h_1$ and $l_2 := \{i : |w_i^{(2)}| = 1\}.$

- Set $w^{(2)} := w^{(1)} + \alpha h_1$ and $l_2 := \{i : |w_j^{(2)}| = 1\}.$
- rank(A_{l₂}) = rank(A)
 → End Algorithm

- Set $w^{(2)} := w^{(1)} + \alpha h_1$ and $l_2 := \{i : |w_i^{(2)}| = 1\}.$
- rank(A_{l₂}) = rank(A)
 → End Algorithm

• Set
$$w := w^{(2)}$$
 and $l := l_2$.

Find Maximal Recoverable Index Set:

- Set $W^{(2)} := W^{(1)} + \alpha h_1$ and $I_2 := \{i : |w_i^{(2)}| = 1\}.$
- $\operatorname{rank}(A_{l_2}) = \operatorname{rank}(A)$ \rightarrow End Algorithm

• Set
$$W := W^{(2)}$$
 and $I := I_2$.

The index set $I = I^+ = \{1, 2\}$ is a maximal recov. index set.

Special Cases: $A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$

Special Cases: $A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$

Special Cases: $A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$ • Start at

 $w^{(0)} = (0, 0).$

Special Cases: $A = \left(\begin{array}{ccc} -3 & 1 & 2 \\ 0 & 2 & 1 \end{array}\right)$

• Start at $w^{(0)} = (0,0).$

• Find $j \in \operatorname{argmax}_{i} ||a_{i}||_{2}$. It is j = 1.

Special Cases: $A = \left(\begin{array}{cc} -3 & 1 & 2 \\ 0 & 2 & 1 \end{array}\right)$

• Start at $w^{(0)} = (0,0)$.

• Find $j \in \operatorname{argmax}_{i} ||a_{i}||_{2}$. It is j = 1. • Set $w^{(1)} = \frac{1}{||a_{1}||_{2}^{2}} A^{T} a_{1}$, $I_{1} = \{1\}$.

Special Cases: $A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$ • Set $W^{(1)} = \frac{1}{\|a_1\|_2^2} A^T a_1$.

• Choose
$$h \in \ker A_{l_1}^T \setminus \{0\}$$
.

Special Cases: $A = \left(\begin{array}{rrr} -3 & 1 & 2 \\ 0 & 2 & 1 \end{array}\right)$ • Set $W^{(1)} = \frac{1}{\|a_1\|_2^2} A^T a_1$.

• Choose $h \in \ker A_L^T \setminus \{0\}$.

• Find
$$\alpha \in \mathbb{R}$$
 s.t.
 $\|A_{I_{1}^{C}}^{T}(w^{(1)} + \alpha h)\|_{\infty} = 1$
and set $I_{2} = \{i: |a_{i}^{T}(w^{(1)} + \alpha h))| = 1\}.$

Special Cases: $A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$ • Set $W^{(1)} = \frac{1}{\|a_1\|_2^2} A^T a_1$.

- Choose $h \in \ker A_{l_1}^T \setminus \{0\}$.
- Find $\alpha \in \mathbb{R}$ s.t. $\|A_{l_1^C}^T(w^{(1)} + \alpha h)\|_{\infty} = 1$ and set $l_2 = \{i: |a_i^T(w^{(1)} + \alpha h)| = 1\}.$

• $|I_2| \ge \operatorname{rank}(A_{I_2})$

Special Cases: $A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$ • Set $w^{(1)} = \frac{1}{\|a_1\|_2^2} A^T a_1$.

• Choose $h \in \ker A_{l_1}^T \setminus \{0\}$.

• Find
$$\beta \neq \alpha$$
 s.t.
 $\|A_{I_c}^T(w^{(1)} + \beta h)\|_{\infty} = 1$
and set $I_3 = \{i: |a_i^T(w^{(1)} + \beta h))| = 1\}.$

Special Cases: $A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$ • Set $w^{(1)} = \frac{1}{\|a_1\|_2^2} A^T a_1$.

- Choose $h \in \ker A_{l_1}^T \setminus \{0\}$.
- Find $\beta \neq \alpha$ s.t. $\|A_{l_1^C}^T(w^{(1)} + \beta h)\|_{\infty} = 1$ and set $l_3 = \{i: |a_i^T(w^{(1)} + \beta h)|| = 1\}.$

•
$$rank(A_{I_3}) = rank(A)$$

 \rightarrow Stop Algorithm

Special Cases:

$$A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$
• Set $w := w^{(1)} + \alpha h$ and
 $l := l_3$.

Special Cases: $A = \left(\begin{array}{rrr} -3 & 1 & 2 \\ 0 & 2 & 1 \end{array}\right)$

• Set
$$w := w^{(1)} + \alpha h$$
 and $l := l_3$.

The index set $I = I^+ = \{1, 2\}$ is the maximal recov. index set.

▶ Special Case 2

Used Parameter:

- Gaussian distributed matrix with varying size,
- Bernoulli matrix with varying size, entries $=\pm 1$ randomly,
- Partial DCT matrix, generated through uniform sampling of *m* rows from the full Discrete Cosine Transform matrix.

Measured Values:

- Time to get an index set
- Value $\|A_{I^{C}}^{T}w\|_{\infty}$

Technische Universität Braunschweig

- One can find test instances for Basis Pursuit / Basis Pursuit Denoising with prescribed sign
- Dual certificate detectable by linear programming or alternating projections
- Found maximal recoverable index set

Construction 3:

- Given w, I⁺, and I⁻
- Find A.
- Choose x^* and λ and construct $b = \lambda w + Ax^*$.

Dual certificate $w \sim \mathcal{N}(0, 1)$ could be noise to the right side Ax^* .

Thank You For Your Attention

References:

- F. Deutsch: Best Approximation in Inner Product Spaces, CMS Books in Mathematics, 2001 (book)
- J.-J. Fuchs: On sparse representations in arbitrary bases, IEEE Transa. o. Info. Theory, 2004 (paper)
- M. Grasmair, M. Haltmeier, O. Scherzer: Necessary and Sufficient Conditions for Linear Convergence of ¹-Regularization, Comm. Pure Appl. Math., 2011 (paper)
- A. Jouditski, A. Nemirovski: On Verifiable Sufficient Conditions for Sparse Signal Recovery via l¹ Minimization, Mathematical Programming Ser. B, 2011 (paper)
- D. Lorenz: Constructing test imstances for Basis Pursuit Denoising, arXiv.org, 2011 (paper)

Contact Christian Kruschel

- c.kruschel@tu-bs.de
- Facebook, Google+

$$\gamma = 1.0$$

<u>Test: matrix gaussian</u>, size 100×200 , sparsity 10.

Technische Universität Braunschweig

 $\gamma = 0.9$

Test: matrix gaussian, size 100×200 , sparsity 10.

Technische Universität Braunschweig

 $\gamma = 0.8$

Test: matrix gaussian, size 100×200 , sparsity 10.

Test: matrix gaussian, size 100×200 , sparsity 10.

Technische Universität Braunschweig

$$\gamma = 0.7$$

Test: matrix gaussian, size 100×200 , sparsity 10.

Technische Universität Braunschweig

$$\gamma = 0.6$$

Special Cases: $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -3 & -2 \end{pmatrix}$

Special Cases: $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -3 & -2 \end{pmatrix}$ • $w^{(1)} = (0, -\frac{1}{3})^T, I_1 = \{2\}$

Special Cases: $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -3 & -2 \end{pmatrix}$

Next possible support
 *I*₂ = [-1, 1, 1] leads to
 *A*_{*I*₂} not injective

Special Cases: $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -3 & -2 \end{pmatrix}$

• Next possible support $I_3 = [1, 1, -1]$ leads to A_{I_3} not injective

Special Cases: $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -3 & -2 \end{pmatrix}$

 Choose one of these supports

Special Cases: $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -3 & -2 \end{pmatrix}$

 Support *I*₄ = [-1, 0, 1] is a maximal rec. support

Back

Special Cases: $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -3 & -2 \end{pmatrix}$

 Support *I*₄ = [-1, 0, 1] is a maximal rec. support

Back

Consider
$$x = (x_1, ..., x_n)^T \in \mathbb{R}^n, p \in \mathbb{N} \setminus \{0\}$$

$$\|x\|_p^p := \sum_{i=1}^n |x_i|^p.$$

Example:

$$\|x\|_{1} = \sum_{i=1}^{n} |x_{i}|,$$
$$\|x\|_{2} = \sqrt{\sum_{i=1}^{n} |x_{i}|^{2}}.$$

