Constructing Test Instances for Sparse Recovery Algorithms

Christian Kruschel and Dirk Lorenz, May 20, 2012
SPEAR - Sparse Exact and Approximate Recovery

TU Braunschweig
Analysis and Algebra

TU Darmstadt
Discrete Optimization

Dirk Lorenz
Marc Pfetsch
Andreas Tillmann
Christian Kruschel

Project period: 2011-2014
Homepage: http://www.math.nat.tu-bs.de/mo/spear
Minimization Problems for Sparse Recovery

We consider $A \in \mathbb{R}^{m \times n}$, $m \leq n$, $b \in \mathbb{R}^m$ and

$$\min_y \|y\|_1 \text{ s.t. } Ay = b,$$

(BP)

further for $\lambda \geq 0$ its denoising variant

$$\min_y \frac{1}{2}\|Ay - b\|_2^2 + \lambda \|y\|_1,$$

(QP$_\lambda$)

with

$$\|y\|_p := \sum_{i=1}^{n} |y_i|^p, p \in \mathbb{N}\setminus\{0\}.$$
So Many Solvers to Compare...

For (BP):
- SPGL1
- NESTA
- YALL1
- ISAL1
- ...

For (QP_\lambda):
- ISTA
- FISTA
- SparSA
- FPC
- ...

How to compare?

L1TestPack generates test instances for (QP_\lambda).

- matrix A can be gaussian, bernoulli, partial DCT, heaviside, random orthonormal rows
- solution x∗ can be chosen gaussian, bernoulli, different dynamic ranges.
- number of non-zero entries in x∗ eligible.
- right side b will be calculated (we’ll see later...)

www.tu-braunschweig.de/iaa/personal/lorenz/l1testpack
So Many Solvers to Compare...

For (BP):
- SPGL1
- NESTA
- YALL1
- ISAL1
- ...

For (QP_\lambda):
- ISTA
- FISTA
- SparSA
- FPC
- ...

How to compare (e.g. in Matlab)?
L1TestPack generates test instances for (QP_\lambda).

www.tu-braunschweig.de/iaa/personal/lorenz/l1testpack
So Many Solvers to Compare...

For (BP):
- SPGL1
- NESTA
- YALL1
- ISAL1
- ...

For (QP\(\lambda\)):
- ISTA
- FISTA
- SparSA
- FPC
- ...

How to compare (e.g. in Matlab) ?

L1TestPack generates test instances for (QP\(\lambda\)).

- matrix \(A\) can be gaussian, bernoulli, partial DCT, heaviside, random orthonormal rows
- solution \(x^*\) can be chosen gaussian, bernoulli, different dynamic ranges.
- number of non-zero entries in \(x^*\) eligible.
- right side \(b\) will be calculated (we’ll see later...)

www.tu-braunschweig.de/iaa/personal/lorenz/l1testpack
So Many Solvers to Compare...

For (BP):
- SPGL1
- NESTA
- YALL1
- ISAL1
- ...

For (QP\(\lambda\)):
- ISTA
- FISTA
- SparSA
- FPC
- ...

How to compare (e.g. in Matlab)?

L1TestPack generates test instances for \((QP_\lambda)\).

- matrix \(A\) can be gaussian, bernoulli, partial DCT, heaviside, random orthonormal rows
- solution \(x^*\) can be chosen gaussian, bernoulli, different dynamic ranges.
 - number of non-zero entries in \(x^*\) eligible.
 - right side \(b\) will be calculated (we’ll see later...)

www.tu-braunschweig.de/iaa/personal/lorenz/l1testpack
So Many Solvers to Compare...

For (BP):
- SPGL1
- NESTA
- YALL1
- ISAL1
- ...

For (QP):
- ISTA
- FISTA
- SparSA
- FPC
- ...

How to compare (e.g. in Matlab)?

L1TestPack generates test instances for \((QP_\lambda)\).

- matrix \(A\) can be gaussian, bernoulli, partial DCT, heaviside, random orthonormal rows
- solution \(x^*\) can be chosen gaussian, bernoulli, different dynamic ranges.
- number of non-zero entries in \(x^*\) eligible.
- right side \(b\) will be calculated (we’ll see later...)

www.tu-braunschweig.de/iaa/personal/lorenz/l1testpack
So Many Solvers to Compare...

For (BP):
- SPGL1
- NESTA
- YALL1
- ISAL1
- ...

For (QP$_\lambda$):
- ISTA
- FISTA
- SparSA
- FPC
- ...

How to compare (e.g. in Matlab)?

L1TestPack generates test instances for (QP$_\lambda$).

- matrix A can be gaussian, bernoulli, partial DCT, heaviside, random orthonormal rows
- solution x^* can be chosen gaussian, bernoulli, different dynamic ranges.
- number of non-zero entries in x^* eligible.
- right side b will be calculated (we’ll see later...)

www.tu-braunschweig.de/iaa/personal/lorenz/l1testpack
So Many Solvers to Compare...

For (BP):
- SPGL1
- NESTA
- YALL1
- ISAL1
- ...

For (QP\(\lambda\)):
- ISTA
- FISTA
- SparSA
- FPC
- ...

How to construct test instances?
Sufficient and Necessary Condition for (BP)

Theorem

Let $A = [a_1, \ldots, a_n] \in \mathbb{R}^{m \times n}$, $x^* \in \mathbb{R}^n$ and $l = \text{supp}(x^*)$. x^* solves

$$\min \|y\|_1 \text{ s.t. } Ay = Ax^*$$

uniquely if and only if A_l is injective and there exists $w \in \mathbb{R}^m$

$$a_i^T w = \text{sign}(x_i^*), \quad \text{for } x_i^* \neq 0 \text{ resp. } i \in l,$$

$$|a_j^T w| \leq 1, \quad \text{for } x_j^* = 0 \text{ resp. } j \in l^C.$$

Notation

For a given $x^* \in \mathbb{R}^n$ we will denote $l \subset \{1, \ldots, n\}$ as the support of x^*, hence $l := \text{supp}(x^*) = \{i : x_i^* \neq 0\}$. l^C is the complement of l.
Lemma (Fuchs, 2004)

The vector x^* is a unique solution of (QP_λ) if

$$a_j^T(b - Ax^*) = \lambda \text{sign}(x_j^*), \text{ for } x_j^* \neq 0,$$

$$|a_j^T(b - Ax^*)| \leq \lambda, \text{ for } x_j^* = 0, \text{ and }$$

A_I injective

holds.
Optimality Conditions for \((QP_{\lambda})\)

Lemma (Fuchs, 2004)

The vector \(x^*\) is a solution of \((QP_{\lambda})\) if and only if

\[
a_i^T (b - Ax^*) = \lambda \text{sign}(x_i^*), \text{ for } x_i^* \neq 0,
\]

\[
|a_j^T (b - Ax^*)| \leq \lambda, \text{ for } x_j^* = 0
\]

holds.

\[
\text{Sign}(x^*)_i = \text{sign}(x_i^*) \text{ if } x_i^* \neq 0
\]

\[
\text{Sign}(x^*)_j \in [-1, 1] \text{ if } x_j^* = 0
\]
Lemma (Fuchs, 2004)

The vector \(x^\ast \) is a solution of \((QP_\lambda)\) if and only if

\[
A^T (b - Ax^\ast) \in \lambda \text{Sign}(x^\ast)
\]

holds.

\[
\text{Sign}(x^\ast)_i = \text{sign}(x^\ast_i) \text{ if } x^\ast_i \neq 0
\]

\[
\text{Sign}(x^\ast)_j \in [-1, 1] \text{ if } x^\ast_j = 0
\]
Optimality Conditions for (QP_{λ})

Lemma

The vector x^* is a solution of (QP_{λ}) if and only if

$$A^T(b - Ax^*) \in \lambda \text{Sign}(x^*)$$

holds.

Idea

For a given A and $\lambda \geq 0$, choose x^* and construct b.
Constructing instances for \((QP_\lambda)\)

Theorem (Lorenz, 2011)

Let \(A \in \mathbb{R}^{m \times n}, \lambda \geq 0, x^* \in \mathbb{R}^n\) and \(z \in \text{rg}(A^T) \cap \text{Sign}(x^*)\). Then for any \(w\) such that \(A^T w = z\) and \(b = \lambda w + Ax^*\), it holds that \(x^*\) solves

\[
\min_y \frac{1}{2} \|Ay - b\|_2^2 + \lambda \|y\|_1.
\]

Proof.

\[
A^T(b - Ax^*) = A^T(\lambda w + Ax^* - Ax^*) = \lambda A^T w \in \lambda \text{Sign}(x^*)
\]
Constructing instances for \((QP_\lambda)\)

Theorem (Lorenz, 2011)

Let \(A \in \mathbb{R}^{m \times n}, \lambda \geq 0, x^* \in \mathbb{R}^n\) and \(z \in \text{rg}(A^T) \cap \text{Sign}(x^*)\).

Then for any \(w\) such that \(A^Tw = z\) and \(b = \lambda w + Ax^*\), it holds that \(x^*\) solves

\[
\min_y \frac{1}{2} \|Ay - b\|_2^2 + \lambda \|y\|_1.
\]

Definition (Dual Certificate)

The element \(w \in \mathbb{R}^m\) satisfying

\[
A^Tw \in \text{Sign}(x^*)
\]

is called **dual certificate**.
What to construct?

Parameters to solve

\[\min_y \frac{1}{2} \| Ay - b \|_2^2 + \lambda \| y \|_1. \]

uniquely:
- matrix \(A \in \mathbb{R}^{m \times n} \),
- solution \(x^* \in \mathbb{R}^n \),
- index sets
 \[I^+ = \{ i : x^*_i \geq 0 \}, \]
 \[I^- = \{ j : x^*_j \leq 0 \}, \]
- dual certificate \(w \in \mathbb{R}^m \)
 satisfying
 \[A^T w \in \text{Sign}(x^*). \]
What to construct?

Parameters to solve

\[
\min_y \frac{1}{2} \|Ay - b\|_2^2 + \lambda \|y\|_1.
\]

uniquely:

- matrix \(A \in \mathbb{R}^{m \times n} \),
- solution \(x^* \in \mathbb{R}^n \),
- index sets
 \(l^+ = \{i : x_i^* \geq 0\} \),
 \(l^- = \{j : x_j^* \leq 0\} \),
- dual certificate \(w \in \mathbb{R}^m \) satisfying \(A^T w \in \text{Sign}(x^*) \).

Construction 1:

- Given \(A, l^+ \) and \(l^- \)
- Find \(w \).
- Choose \(x^* \) and \(\lambda \) and construct \(b = \lambda w + Ax^* \).
What to construct?

Parameters to solve

\[
\min_y \frac{1}{2} \| Ay - b \|_2^2 + \lambda \| y \|_1.
\]

uniquely:

- matrix \(A \in \mathbb{R}^{m \times n} \),
- solution \(x^* \in \mathbb{R}^n \),
- index sets
 \[
 I^+ = \{ i : x_i^* \geq 0 \},
 I^- = \{ j : x_j^* \leq 0 \},
 \]
- dual certificate \(w \in \mathbb{R}^m \)
 satisfying
 \(A^T w \in \text{Sign}(x^*) \).

Construction 1:
- Given \(A \), \(I^+ \) and \(I^- \)
- Find \(w \).
- Choose \(x^* \) and \(\lambda \) and construct
 \(b = \lambda w + Ax^* \).

Construction 2:
- Given \(A \)
- Find \(w \), \(I^+ \) and \(I^- \).
- Choose \(x^* \) and \(\lambda \) and construct
 \(b = \lambda w + Ax^* \).

Notation

Since \(I^+ \) and \(I^- \) are prescribed before \(x^* \) is chosen,

\(\text{Sign}(x^*) \)

is a synonym for \(I^+ \) and \(I^- \).
What to construct?

Parameters to solve

$$\min_y \frac{1}{2} \| Ay - b \|_2^2 + \lambda \| y \|_1.$$

uniquely:

- matrix $A \in \mathbb{R}^{m \times n}$,
- solution $x^* \in \mathbb{R}^n$,
- index sets

 $I^+ = \{ i : x_i^* \geq 0 \}$,

 $I^- = \{ j : x_j^* \leq 0 \}$,
- dual certificate $w \in \mathbb{R}^m$ satisfying

 $A^T w \in \text{Sign}(x^*)$.

Construction 1:

- Given A, I^+ and I^-
- Find w.
- Choose x^* and λ and construct

 $b = \lambda w + A x^*$.

Construction 2:

- Given A
- Find w, I^+ and I^-.
- Choose x^* and λ and construct

 $b = \lambda w + A x^*$.
Parameters to solve

\[
\min_{y} \frac{1}{2} \|Ay - b\|_2^2 + \lambda \|y\|_1.
\]

uniquely:

- matrix \(A \in \mathbb{R}^{m \times n} \),
- solution \(x^* \in \mathbb{R}^n \),
- index sets
 \[
 l^+ = \{ i : x^*_i \geq 0 \},
 l^- = \{ j : x^*_j \leq 0 \},
 \]
- dual certificate \(w \in \mathbb{R}^m \) satisfying
 \[
 A^Tw \in \text{Sign}(x^*).
 \]

Construction 1:

- Given \(A, l^+ \) and \(l^- \)
- Find \(w \).
- Choose \(x^* \) and \(\lambda \) and construct
 \[
 b = \lambda w + Ax^*.
 \]

Construction 2:

- Given \(A \)
- Find \(w, l^+ \) and \(l^- \).
- Choose \(x^* \) and \(\lambda \) and construct
 \[
 b = \lambda w + Ax^*.
 \]
Constructing instances for \((QP_\lambda)\)

Idea

For a given \(A \in \mathbb{R}^{m \times n}\) and \(\lambda \geq 0\) choose \(x^* \in \mathbb{R}^n\) and construct \(b \in \mathbb{R}^m\).

- Specify \(A \in \mathbb{R}^{m \times n}\), \(I\) and restricted sign-vector \(z_I, |z_i| = 1, i \in I\).
- Construct \(z \in \mathbb{R}^n, |z_j| \leq 1, j \in I^C\), and solve \(A^T w = z\).
- Choose \(\lambda \geq 0\) and \(x^*\) according to \(z\) and set

\[
b = \lambda w + A x^*.\]

- Vector \(x^*\) solves \((BP)\) uniquely, \(x^* = \arg \min_y \|y\|_1\) s.t. \(Ay = Ax^*\).
- Vector \(x^*\) solves \((QP_\lambda)\) uniquely,

\[
x^* = \arg \min_y \frac{1}{2} \|Ay - b\|_2^2 + \lambda \|y\|_1.\]
Constructing instances for (QP_λ)

Idea

For a given $A \in \mathbb{R}^{m \times n}$ and $\lambda \geq 0$ choose $x^* \in \mathbb{R}^n$ and construct $b \in \mathbb{R}^m$.

- Specify $A \in \mathbb{R}^{m \times n}$, I and restricted sign-vector $z_i, |z_i| = 1, i \in I$.
- Construct $z \in \mathbb{R}^n, |z_j| \leq 1, j \in I^C$, and solve $A^T w = z$.
- Choose $\lambda \geq 0$ and x^* according to z and set
 \[b = \lambda w + Ax^*. \]
- Vector x^* solves (BP) uniquely, $x^* = \arg\min_y \|y\|_1$ s.t. $Ay = Ax^*$.
- Vector x^* solves (QP_λ) uniquely,
 \[x^* = \arg\min_y \frac{1}{2}\|Ay - b\|_2^2 + \lambda\|y\|_1. \]
Constructing instances for \((QP_\lambda)\)

Idea

For a given \(A \in \mathbb{R}^{m \times n}\) and \(\lambda \geq 0\) choose \(x^* \in \mathbb{R}^n\) and construct \(b \in \mathbb{R}^m\).

- Specify \(A \in \mathbb{R}^{m \times n}\), \(I\) and restricted sign-vector \(z_i, |z_i| = 1, i \in I\).
- Construct \(z \in \mathbb{R}^n, |z_j| \leq 1, j \in I^C\), and solve \(A^T w = z\).
- Choose \(\lambda \geq 0\) and \(x^*\) according to \(z\) and set
 \[
 b = \lambda w + Ax^*.
 \]
- Vector \(x^*\) solves (BP) uniquely, \(x^* = \arg\min_y \|y\|_1\) s.t. \(Ay = Ax^*\).
- Vector \(x^*\) solves \((QP_\lambda)\) uniquely,
 \[
 x^* = \arg\min_y \frac{1}{2}\|Ay - b\|_2^2 + \lambda \|y\|_1.
 \]
Constructing Dual Certificate

- **Method 1:**
 Find \(z \in \text{rg}(A^T) \cap \text{Sign}(x^*) \), solve \(A^T w = z \).
 - by Alternating Projection,
 - \(z_j \approx \pm 1 \), for some \(j \in I^C \).

- **Method 2:**
 \[
 \min_z \| z_{I^C} \|_2^2 \text{ s.t. } z \in \text{rg}(A^T) \cap \text{Sign}(x^*) .
 \]
Constructing Dual Certificate

- **Method 1:**
 Find $z \in \text{rg}(A^T) \cap \text{Sign}(x^*)$, solve $A^T w = z$.
 - by Alternating Projection,
 - $z_j \approx \pm 1$, for some $j \in I^C$.

Test: matrix gaussian, size 100×200, solution gaussian, sparsity 10.
Constructing Dual Certificate

- **Method 1:**
 Find $z \in \text{rg}(A^T) \cap \text{Sign}(x^*)$, solve $A^T w = z$.
 - by Alternating Projection,
 - $z_j \approx \pm 1$, for some $j \in I^C$.

- **Method 2:**
 $\min_z \|z|_I\|_2^2$ s.t. $z \in \text{rg}(A^T) \cap \text{Sign}(x^*)$.

- **Method 3:**
 $\min_z \|P_{I^C}z\|_\infty$ s.t. $z \in \text{rg}(A^T) \cap \text{Sign}(x^*)$.

May 20, 2012 | Kruschel, Lorenz
Constructing Dual Certificate

- **Method 1:**
 Find $z \in \text{rg}(A^T) \cap \text{Sign}(x^*)$, solve $A^T w = z$.
 - by Alternating Projection,
 - $z_j \approx \pm 1$, for some $j \in I^C$.

- **Method 2:**
 \[
 \min_z \|z_{I^C}\|_2^2 \quad \text{s.t.} \quad z \in \text{rg}(A^T) \cap \text{Sign}(x^*) .
 \]
 - Same z as in Method 1. (see Deutsch (2001))
Constructing Dual Certificate

- **Method 1:**
 Find $z \in \text{rg}(A^T) \cap \text{Sign}(x^*)$, solve $A^T w = z$.
 - by Alternating Projection,
 - $z_j \approx \pm 1$, for some $j \in I^C$.

- **Method 2:**
 $\min_z \|Z_{I^C}\|_2^2$ s.t. $z \in \text{rg}(A^T) \cap \text{Sign}(x^*)$.
 - Same z as in Method 1. (see Deutsch (2001))

- **Method 2.1:**
 $\min_z \|Z_{I^C}\|_2^2$ s.t. $z \in \text{rg}(A^T) \cap \text{Sign}(x^*)$, $\|Z_{I^C}\|_\infty \leq \gamma$.
 - Given $\gamma \in (0, 1)$.
Constructing Dual Certificate

- **Method 1:**
 Find \(z \in \text{rg}(A^T) \cap \text{Sign}(x^*) \), solve \(A^T w = z \).
 - by Alternating Projection,
 - \(z_j \approx \pm 1 \), for some \(j \in I^C \).

- **Method 2:**
 \[\min_z \| z_{I^C} \|_2^2 \quad \text{s.t.} \quad z \in \text{rg}(A^T) \cap \text{Sign}(x^*) \]
 - Similar to Method 1.

- **Method 2.1:**
 \[\min_z \| z_{I^C} \|_2^2 \quad \text{s.t.} \quad z \in \text{rg}(A^T) \cap \text{Sign}(x^*), \| z_{I^C} \|_\infty \leq \gamma = 0.9 \]
 - Might be infeasible, but \(\| z_{I^C} \|_\infty \leq 1 \), e.g.

\[
A = \begin{pmatrix}
1 & 0.5 & 0 \\
0 & 0.45 & -1
\end{pmatrix},
I^+ = \{1\}, I^- = \{3\}.
\]

- Decreasing \(\gamma \)
Constructing Dual Certificate

- **Method 1:**
 Find $z \in \text{rg}(A^T) \cap \text{Sign}(x^*)$, solve $A^Tw = z$.
 - by Alternating Projection,
 - $z_j \approx \pm 1$, for some $j \in I^c$.

- **Method 2:**
 \[
 \min_z \|z_{I^C}\|_2^2 \quad \text{s.t.} \quad z \in \text{rg}(A^T) \cap \text{Sign}(x^*) .
 \]
 - Similar to Method 1.

- **Method 2.1:**
 \[
 \min_z \|z_{I^C}\|_2^2 \quad \text{s.t.} \quad z \in \text{rg}(A^T) \cap \text{Sign}(x^*), \quad \|z_{I^C}\|_\infty \leq \gamma = 0.9 .
 \]
 - Might be infeasible, but $\|z_{I^C}\|_\infty \leq 1$.

- **Method 3:**
 \[
 \min_z \|z_{I^C}\|_\infty \quad \text{s.t.} \quad z \in \text{rg}(A^T) \cap \text{Sign}(x^*) .
 \]

Constructing Dual Certificate

- **Method 3:**
 \[
 \min_z \| z \|_{\infty} \text{ s.t. } z \in \text{rg}(A^T) \cap \text{Sign}(x^*)
 \]
 - is equivalent to
 \[
 \min_w \| A^T_{/C} w \|_{\infty} \text{ s.t. } A^T_{/C} w = \text{sign}(x^*)_I \text{ and }
 \begin{bmatrix}
 A^T_{/C} \\
 -A^T_{/C}
 \end{bmatrix} w \leq \begin{pmatrix}
 1_{/C} \\
 1_{/C}
 \end{pmatrix},
 \]
 - is realizable as a Linear Program.
Tested Method: \(\min_w \|A_T w\|_\infty \) s.t. \(A_T w \in \text{Sign}(x^*) \)

\(A \) and \(x^* \) chosen by L1TestPack

Used Parameter:
- Gaussian distributed matrix with varying size,
- Bernoulli matrix with varying size, entries \(= \pm 1 \) randomly,
- Partial DCT matrix, generated through uniform sampling of \(m \) rows from the full Discrete Cosine Transform matrix.

Measured Values:
- Error on Support, \(\|A_T w \pm 1\|_2 \),
- Optimized value, \(\|A_T w\|_\infty \),
- Time to solve the problem,
Tested Method: \(\min_w \| A_{\tilde{I}C}^T w \|_{\infty} \) s.t. \(A^T w \in \text{Sign}(x^*) \)

A and \(x^* \) chosen by L1TestPack

Used Parameter:
- Gaussian distributed matrix with varying size,
- Bernoulli matrix with varying size, entries \(= \pm 1 \) randomly,
- Partial DCT matrix, generated through uniform sampling of \(m \) rows from the full Discrete Cosine Transform matrix.

Measured Values:
- Error on Support, \(\| A_{\tilde{I}}^T w \pm 1 \|_2 \approx 10^{-12} \),
- Optimized value, \(\| A_{\tilde{I}C}^T w \|_{\infty} \),
- Time to solve the problem,
Constructing Dual Certificate - Test

Uniform norm of A_{cw}^T with A as $m \times 1000$ matrix, Sparsity: 17 resp.

$||A_{cw}^T||_\infty$

m: Number of Rows in A

- Green: Gaussian
- Red: Bernoulli
- Blue: Partial DCT
Uniform norm of A_{cw}^T with A as $100 \times n$ matrix, Sparsity: 17 resp. 1
Time, A as $m \times 1000$ matrix, Sparsity: 17 resp. 1

- Gaussian
- Bernoulli
- Partial DCT

m: Number of Rows in A
Parameters to solve

\[
\min_y \frac{1}{2} \|Ay-b\|_2^2 + \lambda \|y\|_1.
\]

uniquely:

- matrix \(A \in \mathbb{R}^{m \times n} \),
- solution \(x^* \in \mathbb{R}^n \),
- index sets
 \(I^+ = \{ i : x_i^* \geq 0 \} \),
 \(I^- = \{ j : x_j^* \leq 0 \} \),
- dual certificate \(w \in \mathbb{R}^m \) satisfying
 \(A^T w \in \text{Sign}(x^*) \).

Construction 1:
- Given \(A, I^+ \) and \(I^- \)
- Find \(w \).
- Choose \(x^* \) and \(\lambda \) and construct
 \(b = \lambda w + Ax^* \).

Construction 2:
- Given \(A \)
- Find \(w, I^+ \) and \(I^- \).
- Choose \(x^* \) and \(\lambda \) and construct
 \(b = \lambda w + Ax^* \).

May 20, 2012 | Kruschel, Lorenz

Constructing Test Instances for Sparse Recovery Algorithms | Page 16
What to construct?

Construction 2:

- Given A
- Find w, I^+ and I^-.
- Choose x^* and λ and construct $b = \lambda w + Ax^*$.

Additional Goal:

Find index set $I^+ \cup I^-$ with largest possible cardinality.
What to construct?

Construction 2:
- Given A
- Find w, I^+ and I^-.
- Choose x^* and λ and construct $b = \lambda w + A x^*$.

Additional Goal:

Find index set $I^+ \cup I^-$ with largest possible cardinality.

\rightarrow any other cardinality $\leq \text{rank}(A)$ chooseable
Recoverable Indices

Definition

An index set $I \subset \{1, ..., n\}$ is called recoverable for $A \in \mathbb{R}^{m \times n}$, if there exists $x^* \in \mathbb{R}^n$, $I = \text{supp}(x^*)$, solving uniquely

$$\min \|y\|_1 \text{ s.t. } Ay = Ax^*.$$

A recoverable index set I is called maximal, if there exists no recoverable index set J satisfying $|I| \not\leq |J|$.

The index set I is recoverable if there exists $w \in \mathbb{R}^m$ satisfying

$$|a_i^T w| = 1, \text{ for } i \in I,$$

$$|a_j^T w| \leq 1, \text{ for } j \in I^C,$$

A_I is injective.
Recoverable Indices

Definition

An index set \(I \subset \{1, \ldots, n\} \) is called **recoverable** for \(A \in \mathbb{R}^{m \times n} \), if there exists \(x^* \in \mathbb{R}^n, I = \text{supp}(x^*) \), solving uniquely

\[
\min \|y\|_1 \text{ s.t. } Ay = Ax^*.
\]

A recoverable index set \(I \) is called **maximal**, if there exists no recoverable index set \(J \) satisfying \(|I| \not\leq |J| \).

The index set \(I \) is recoverable if there exists \(w \in \mathbb{R}^m \) satisfying

\[
|a_i^T w| = 1, \text{ for } i \in I,
\]

\[
|a_j^T w| \leq 1, \text{ for } j \in I^C,
\]

\(A_I \) is injective.
Recoverable Indices

Definition

An index set $I \subset \{1, \ldots, n\}$ is called recoverable for $A \in \mathbb{R}^{m \times n}$, if there exists $x^* \in \mathbb{R}^n$, $I = \text{supp}(x^*)$, solving uniquely

$$\min \|y\|_1 \text{ s.t. } Ay = Ax^*. $$

A recoverable index set I is called maximal, if there exists no recoverable index set J satisfying $|I| \prec |J|$.

The index set I is recoverable if there exists $w \in \mathbb{R}^m$ satisfying

$$|a_i^T w| = 1, \text{ for } i \in I,$$

$$|a_j^T w| \preceq 1, \text{ for } j \in I^C, \quad \text{Recov. index set } I \text{ depends on } A \text{ and } w.$$

A_I is injective.
Recoverable Indices

Definition

An index set $I \subset \{1, \ldots, n\}$ is called recoverable for $A \in \mathbb{R}^{m \times n}$, if there exists $x^* \in \mathbb{R}^n$, $I = \text{supp}(x^*)$, solving uniquely

$$\min \|y\|_1 \text{ s.t. } Ay = Ax^*.$$

A recoverable index set I is called maximal, if there exists no recoverable index set J satisfying $|I| \lesssim |J|$.

The index set I is recoverable if there exists $w \in \mathbb{R}^m$ satisfying

$$|a_i^T w| = 1, \text{ for } i \in I,$$

$$|a_j^T w| \lesssim 1, \text{ for } j \in I^C,$$

Recov. index set I depends on A and w. A_I is injective. How to compute a maximal index set?
Find Maximal Recoverable Index Set

- Unit Cube in \mathbb{R}^3
- Cube $= \{(x, y, z) : |x| \leq 1, |y| \leq 1, |z| \leq 1\}$
Find Maximal Recoverable Index Set

- Unit Cube in \mathbb{R}^3
- Cube $= \{(x, y, z) : |x| \leq 1, |y| \leq 1, |z| \leq 1\}$
Find Maximal Recoverable Index Set

\[\mathbb{R}^3 \]

- Range of \(A^T \)
- \(\text{rg}(A^T) = \{z : \exists w : A^T w = z\} \)
Find Maximal Recoverable Index Set

- Intersection of Cube and $\text{rg}(A^T)$
- $\exists z \in \text{Cube} \cap \text{rg}A^T$
Find Maximal Recoverable Index Set

- Intersection of Cube and $\text{rg}(A^T)$
- $\exists z \in \text{Cube} \cap \text{rg}A^T$
- Recoverable Index Sets: $I = I^+ \cup I^-$
 - $I^+ = \{2\}$
 - $I^+ = \{2\}, I^- = \{1\}$
 - $I^+ = \{1\}$
 - $I^+ = \{1, 2\}$
 - etcetera
Find Maximal Recoverable Index Set

- Intersection of Cube and \(\text{rg}(A^T) \)
- \(\exists z \in \text{Cube} \cap \text{rg} A^T \)
- Recoverable Index Sets: \(I = I^+ \cup I^- \)
 - \(I^+ = \{2\} \)
 - \(I^+ = \{2\}, I^- = \{1\} \)
 - \(I^+ = \{1\} \)
 - \(I^+ = \{1,2\} \)
 - etcetera
Find Maximal Recoverable Index Set

- Intersection of Cube and $\text{rg}(A^T)$
- $\exists z \in \text{Cube} \cap \text{rg}A^T$
- Recoverable Index Sets: $I = I^+ \cup I^-$
 - $I^+ = \{2\}$
 - $I^+ = \{2\}, I^- = \{1\}$
 - $I^+ = \{1\}$
 - $I^+ = \{1,2\}$
 - etcetera
Find Maximal Recoverable Index Set

- Intersection of Cube and \(\text{rg}(A^T) \)
- \(\exists z \in \text{Cube} \cap \text{rg}A^T \)
- Recoverable Index Sets: \(I = I^+ \cup I^- \)
 - \(I^+ = \{2\} \)
 - \(I^+ = \{2\}, I^- = \{1\} \)
 - \(I^+ = \{1\} \)
 - \(I^+ = \{1, 2\} \)
 - etcetera
Find Maximal Recoverable Index Set

- Intersection of Cube and \(\text{rg}(A^T) \)
- \(\exists z \in \text{Cube} \cap \text{rg}A^T \)
- Recoverable Index Sets: \(I = I^+ \cup I^- \)
 - \(I^+ = \{2\} \)
 - \(I^+ = \{2\}, I^- = \{1\} \)
 - \(I^+ = \{1\} \)
 - \(I^+ = \{1, 2\} \)
 - etcetera
Find Maximal Recoverable Index Set:

- Start at $w^{(0)} = (0, 0)$.

\mathbb{R}^3
Find Maximal Recoverable Index Set:

- Start at $w^{(0)} = (0, 0)$.
- Find $j \in \text{argmax}_i \|a_i\|_2$.

$A^T w^{(0)}$
Find Maximal Recoverable Index Set:

- Start at $w^{(0)} = (0, 0)$.
- Find $j \in \arg \max_i \|a_i\|_2$.
- Set $w^{(1)} := \frac{1}{\|a_j\|^2} a_j$ and $I_1 := \{j\}$.
Find Maximal Recoverable Index Set:

- Set \(w^{(1)} := \frac{1}{\|a_j\|_2^2} a_j \)
 and \(l_1 := \{j\} \).
Find Maximal Recoverable Index Set:

- Set \(w^{(1)} := \frac{1}{\|a_j\|_2^2} a_j \) and \(l_1 := \{j\} \).
- Choose \(h_1 \in \ker A^T_{l_1} \backslash \{0\} \).
Find Maximal Recoverable Index Set:

- Set \(w^{(1)} := \frac{1}{\|a_j\|_2^2} a_j \)
 and \(I_1 := \{j\} \).
- Choose \(h_1 \in \ker A^T_{I_1} \setminus \{0\} \).
- Find \(\alpha \in \mathbb{R} \) such that
 \(\|A^T_{I_1} (w^{(1)} + \alpha h_1)\|_{\infty} = 1 \).
Find Maximal Recoverable Index Set:

- Set \(w^{(1)} := \frac{1}{\|a_j\|_2^2} a_j \) and \(l_1 := \{j\} \).
- Choose \(h_1 \in \ker A^T_{l_1} \{0\} \).
- Find \(\alpha \in \mathbb{R} \) such that \(\|A^T_{l_1^c} (w^{(1)} + \alpha h_1)\|_\infty = 1 \).
- Set \(w^{(2)} := w^{(1)} + \alpha h_1 \) and \(l_2 := \{i : |w_i^{(2)}| = 1\} \).
Find Maximal Recoverable Index Set:

- Set $\mathbf{w}^{(2)} := \mathbf{w}^{(1)} + \alpha \mathbf{h}_{1}$
 and $I_2 := \{ i : |w_i^{(2)}| = 1 \}$.
Find Maximal Recoverable Index Set:

- Set \(w^{(2)} := w^{(1)} + \alpha h_1 \)
 and \(l_2 := \{i : |w_i^{(2)}| = 1\} \).
- \(\text{rank}(A_{l_2}) = \text{rank}(A) \)
 \(\rightarrow \) End Algorithm
Find Maximal Recoverable Index Set:

- Set \(w^{(2)} := w^{(1)} + \alpha h_1 \)
 and \(l_2 := \{ i : |w_i^{(2)}| = 1 \} \).
- \(\text{rank}(A_{l_2}) = \text{rank}(A) \) → End Algorithm
- Set \(w := w^{(2)} \) and \(l := l_2 \).
Find Maximal Recoverable Index Set:

- Set \(w^{(2)} := w^{(1)} + \alpha h_1 \) and \(l_2 := \{ i : |w_i^{(2)}| = 1 \} \).
- \(\text{rank}(A_{l_2}) = \text{rank}(A) \)
- → End Algorithm
- Set \(w := w^{(2)} \) and \(l := l_2 \).

The index set \(l = l^+ = \{1, 2\} \) is a maximal recoverable index set.
Find Maximal Recoverable Index Set

Special Cases:

\[A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix} \]
Find Maximal Recoverable Index Set

\mathbb{R}^3

Special Cases:

$$A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$
Find Maximal Recoverable Index Set

\mathbb{R}^3

$A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$

Special Cases:

- Start at $w^{(0)} = (0,0)$.

Start at $w^{(0)} = (0,0)$.

\mathbb{R}^3
Find Maximal Recoverable Index Set

\mathbb{R}^3

Special Cases:

$A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$

- Start at $w^{(0)} = (0, 0)$.
- Find $j \in \arg\max_i \|a_i\|_2$. It is $j = 1$.

$A^T w^{(0)}$
Find Maximal Recoverable Index Set

Special Cases:

\[A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix} \]

- Start at \(w^{(0)} = (0,0) \).
- Find \(j \in \arg\max_i \|a_i\|_2 \). It is \(j = 1 \).
- Set \(w^{(1)} = \frac{1}{\|a_1\|_2^2} A^T a_1 \), \(I_1 = \{1\} \).
Find Maximal Recoverable Index Set

Special Cases:

\[A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix} \]

- Set \(w^{(1)} = \frac{1}{\|a_1\|_2^2} A^T a_1 \).
- Choose \(h \in \ker A^T_{l_1} \backslash \{0\} \).
Find Maximal Recoverable Index Set

Special Cases:
\[A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix} \]

- Set \(w^{(1)} = \frac{1}{\|a_1\|_2^2} A^T a_1 \).
- Choose \(h \in \ker A_{l_1}^T \setminus \{0\} \).
- Find \(\alpha \in \mathbb{R} \) s.t.
 \[\|A_{l_1}^T(w^{(1)} + \alpha h)\|_\infty = 1 \]
 and set \(l_2 = \{ i : |a_i^T(w^{(1)} + \alpha h)| = 1 \} \).
Find Maximal Recoverable Index Set

\[A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix} \]

Special Cases:
- Set \(w^{(1)} = \frac{1}{\|a_1\|^2} A^T a_1 \).
- Choose \(h \in \ker A^T_{I_1} \setminus \{0\} \).
- Find \(\alpha \in \mathbb{R} \) s.t.
 \[\| A^T_{I_{1}^C} (w^{(1)} + \alpha h) \|_\infty = 1 \]
 and set \(I_2 = \{ i : |a_i^T (w^{(1)} + \alpha h)| = 1 \} \).
- \(|I_2| \geq \text{rank}(A_{I_2}) \)
Find Maximal Recoverable Index Set

Special Cases:

\[A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix} \]

- Set \(w^{(1)} = \frac{1}{\|a_1\|^2_2} A^T a_1 \).
- Choose \(h \in \ker A^T_{l_1}\setminus\{0\} \).
- Find \(\beta \neq \alpha \) s.t.
 \[\|A^T_{l_1^c}(w^{(1)} + \beta h)\|_\infty = 1 \]
 and set \(l_3 = \{i: |a_i^T(w^{(1)} + \beta h)| = 1\} \).
Find Maximal Recoverable Index Set

\[A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix} \]

Special Cases:
- Set \(w^{(1)} = \frac{1}{\|a_1\|_2^2} A^T a_1 \).
- Choose \(h \in \ker A^T_{l_1} \backslash \{0\} \).
- Find \(\beta \neq \alpha \) s.t.
 \[\| A^T_{l_1} (w^{(1)} + \beta h) \|_\infty = 1 \]
 and set \(l_3 = \{i : |a_i^T (w^{(1)} + \beta h)| = 1\} \).
- \(\text{rank}(A_{l_3}) = \text{rank}(A) \) → Stop Algorithm
Find Maximal Recoverable Index Set

Special Cases:

\[A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix} \]

- Set \(w := w^{(1)} + \alpha h \) and \(l := l_3 \).
Find Maximal Recoverable Index Set

\[A = \begin{pmatrix} -3 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix} \]

- Set \(w := w^{(1)} + \alpha h \) and \(l := l_3 \).

The index set \(l = l^+ = \{1, 2\} \) is the maximal recoverable index set.

Special Case 2
Find Maximal Recoverable Index Set - Test

Used Parameter:

- Gaussian distributed matrix with varying size,
- Bernoulli matrix with varying size, entries $= \pm 1$ randomly,
- Partial DCT matrix, generated through uniform sampling of m rows from the full Discrete Cosine Transform matrix.

Measured Values:

- Time to get an index set
- Value $\|A^T w\|_\infty$
Find Maximal Recoverable Index Set - Test
Find Maximal Recoverable Index Set - Test

A as $m \times 1000$ matrix

<table>
<thead>
<tr>
<th>m</th>
<th>$|A_{IC}^T w|_\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.994</td>
</tr>
<tr>
<td>200</td>
<td>0.997</td>
</tr>
<tr>
<td>300</td>
<td>0.987</td>
</tr>
<tr>
<td>400</td>
<td>0.993</td>
</tr>
<tr>
<td>500</td>
<td>0.992</td>
</tr>
<tr>
<td>600</td>
<td>0.984</td>
</tr>
<tr>
<td>700</td>
<td>0.99993</td>
</tr>
<tr>
<td>800</td>
<td>0.935</td>
</tr>
<tr>
<td>900</td>
<td>0.945</td>
</tr>
</tbody>
</table>

Bernoulli matrix
Conclusion

- One can find test instances for Basis Pursuit / Basis Pursuit Denoising with prescribed sign
- Dual certificate detectable by linear programming or alternating projections
- Found maximal recoverable index set
Future Work

Construction 3:

- Given w, l^+, and l^-
- Find A.
- Choose x^* and λ and construct $b = \lambda w + Ax^*$.

Dual certificate $w \sim \mathcal{N}(0, 1)$ could be noise to the right side Ax^*.
Thank You For Your Attention

References:

- D. Lorenz: Constructing test imstances for Basis Pursuit Denoising, arXiv.org, 2011 (paper)

Contact Christian Kruschel

- c.kruschel@tu-bs.de
- Facebook, Google+
Constructing Dual Certificate

- **Method 2.1:**
 \[
 \min_z \| P_I c z \|_2^2 \quad \text{s.t.} \quad z \in \text{rg}(A^T) \cap \text{Sign}(x^*), \quad \| P_I c z \|_\infty \leq \gamma.
 \]
 - Given \(\gamma \in [0, 1] \).

\[\gamma = 1.0 \]

Test: matrix gaussian, size 100 \(\times \) 200, sparsity 10.
Method 2.1:
\[
\min_z \| P_{\mathcal{C}} z \|_2^2 \quad \text{s.t.} \quad z \in \text{rg}(A^T) \cap \text{Sign}(x^*), \quad \| P_{\mathcal{C}} z \|_\infty \leq \gamma.
\]
- Given \(\gamma \in [0, 1] \).

\[\gamma = 0.9\]

Test: matrix gaussian, size 100 \(\times \) 200, sparsity 10.
Constructing Dual Certificate

- Method 2.1:
 \[\min_z \| P_I c z \|_2^2 \text{ s.t. } z \in \text{rg}(A^T) \cap \text{Sign}(x^*), \| P_I c z \|_\infty \leq \gamma. \]
 - Given \(\gamma \in [0, 1] \).

\[\gamma = 0.8 \]

Test: matrix gaussian, size 100 \times 200, sparsity 10.
Method 2.1:

\[
\min_z \|P_I c z\|^2_2 \quad \text{s.t.} \quad z \in \text{rg}(A^T) \cap \text{Sign}(x^*), \quad \|P_I c z\|_\infty \leq \gamma.
\]

- Given \(\gamma \in [0, 1] \).

\[\gamma = 0.7\]

Test: matrix gaussian, size 100 \(\times \) 200, sparsity 10.
Constructing Dual Certificate

Method 2.1:
\[
\min_z \|P_Ic z\|_2^2 \quad \text{s.t. } z \in \text{rg}(A^T) \cap \text{Sign}(x^*), \|P_Ic z\|_\infty \leq \gamma.
\]
- Given \(\gamma \in [0, 1] \).

\(\gamma = 0.6 \)

Test: matrix gaussian, size 100 \(\times \) 200, sparsity 10.

Infeasible
Find Maximal Recoverable Index Set

\[\mathbb{R}^3 \]

Special Cases:

\[A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -3 & -2 \end{pmatrix} \]
Find Maximal Recoverable Index Set

\[\mathbb{R}^3 \]

\[A^T w^{(1)} \]

\[A^T w^{(0)} \]

Special Cases:

\[A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -3 & -2 \end{pmatrix} \]

- \[w^{(1)} = (0, -\frac{1}{3})^T, I_1 = \{2\} \]
Find Maximal Recoverable Index Set

\mathbb{R}^3

$A^T w^{(1)}$

Special Cases:

$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -3 & -2 \end{pmatrix}$

- Next possible support $I_2 = [-1, 1, 1]$ leads to A_{I_2} not injective
Find Maximal Recoverable Index Set

Special Cases:
\[
A = \begin{pmatrix}
1 & 0 & -1 \\
2 & -3 & -2
\end{pmatrix}
\]

- Next possible support \(I_3 = [1, 1, -1] \) leads to \(A_{I_3} \) not injective
Find Maximal Recoverable Index Set

\[\mathbb{R}^3 \]

\[A^T w^{(1)} \]

Special Cases:

\[A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -3 & -2 \end{pmatrix} \]

- Choose one of these supports
Find Maximal Recoverable Index Set

Special Cases:

\[A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -3 & -2 \end{pmatrix} \]

- Support \(l_4 = [-1, 0, 1] \) is a maximal rec. support
Find Maximal Recoverable Index Set

$A^T w$

Special Cases:

\[
A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -3 & -2 \end{pmatrix}
\]

- Support $I_4 = [-1, 0, 1]$ is a maximal rec. support
Consider $x = (x_1, ..., x_n)^T \in \mathbb{R}^n, p \in \mathbb{N}\{0\}$

$$\|x\|_p^p := \sum_{i=1}^{n} |x_i|^p.$$

Example:

$$\|x\|_1 = \sum_{i=1}^{n} |x_i|,$$

$$\|x\|_2 = \sqrt{\sum_{i=1}^{n} |x_i|^2}.$$