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The proximal point algorithm

m Consider the problem of finding a x in a Hilbert space such that T(x) 3 0,
where T is a maximal monotone operator.

m The proximal point algorithm: [Martinet '70], [Rockafellar '76]

m Choose a x” and generate the sequence {x"} for each n > 0 via

= T(Xn+l) + A;1(Xn+1 _ Xn)
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m Choose a x° and generate the sequence {x"} for each n > 0 via
0 T(") + A7 (™ — x7)
m The proximal point algorithm can be written as [Minty '62]
X = (14 2 T) L"),

where (I + X, T)™! is the resolvent operator.
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The proximal point algorithm

m Consider the problem of finding a x in a Hilbert space such that T(x) 3 0,
where T is a maximal monotone operator.

m The proximal point algorithm: [Martinet '70], [Rockafellar '76]

m Choose a x° and generate the sequence {x"} for each n > 0 via
0 T(") + A7 (™ — x7)
m The proximal point algorithm can be written as [Minty '62]
X = (14 2 T) L"),

where (I + X, T)™! is the resolvent operator.

m Let F(x) be a proper, |.s.c. convex function and T(x) = 9F(x), then the
algorithm reads
n+

1
x" = arg min F(x)+ KHX —x"3
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The proximal point is O(1/n)

m Convergence of the proximal point algorithm in case of summable errors
have been proven [Rockafellar '76] in and in case of non-summable errors
recently in [Zaslavski '11]
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The proximal point is O(1/n)

m Convergence of the proximal point algorithm in case of summable errors
have been proven [Rockafellar '76] in and in case of non-summable errors
recently in [Zaslavski '11]

m Moreover, if Apy1 < As, one has [Dong '12]
X = (T Apa T) IR < X" = T+ A T)HX) 12
from which follows that

Ix" = (I + 2 T) " (x")l2 < O(1/n)
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The proximal point is O(1/n)

m Convergence of the proximal point algorithm in case of summable errors
have been proven [Rockafellar '76] in and in case of non-summable errors
recently in [Zaslavski '11]

= Moreover, if Apy1 < As, one has [Dong '12]
X" = (T Ana T) T < MIx" = (X T)
from which follows that
X" = (1 + X T) T (x")II2 < O(1/n)

= Unfortunately, computing the resolvent is often as difficult as solving the
problem

m However, in case T(x) can be written as sum of two operators each with
simple to compute resolvents, things will change...
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A class of problems
Let us consider the following class of structured convex optimization problems
min F(Kx G(x
min F(KX) + G(x) ,

m K: X — Y is a linear and continuous operator from a Hilbert space X to
a Hilbert space Y and F, G are convex, proper, l.s.c. functions.

= Note that the subdifferential of this problem is the sum of two operators

T(x) = K*OF(Kx) + 9G(x)
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Let us consider the following class of structured convex optimization problems
min F(Kx G(x
min F(KX) + G(x) ,

m K: X — Y is a linear and continuous operator from a Hilbert space X to
a Hilbert space Y and F, G are convex, proper, l.s.c. functions.

= Note that the subdifferential of this problem is the sum of two operators
T(x) = K*OF(Kx) + 9G(x)
® Main assumption: F, G are “simple” in the sense that they have easy to

compute resolvent operators:

_ a2
(I +9F)~*(p) = argmin lp = PI” + F(p)
P 2\

o2
(1 +66G) (%) = argmin w + G(x)
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A class of problems
Let us consider the following class of structured convex optimization problems
min F(Kx G(x
min F(KX) + G(x) ,

m K: X — Y is a linear and continuous operator from a Hilbert space X to
a Hilbert space Y and F, G are convex, proper, l.s.c. functions.

= Note that the subdifferential of this problem is the sum of two operators
T(x) = K*OF(Kx) + 9G(x)

® Main assumption: F, G are “simple” in the sense that they have easy to
compute resolvent operators:

_ a2
(I+8F) ' (p) = arg mpin Il = A1 2;” + F(p)
o2
(1 +66G) (%) = argmin w + G(x)

m It turns out that many standard problems can be cast in this framework.
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Some examples

m The ROF model A
min [Vulz.1 + 3 o~ 713
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Some examples

m The ROF model A
min [Vulz.1 + 3 o~ 713

m Basis pursuit problem (LASSO)

. A
min [[x[l1 + | Ax — b3

m Linear support vector machine

LA .
min Z{lwl}3 + >~ max (0,1~ y; ((w, ;) + b))
’ i=1
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Some examples

m The ROF model N
min|[Vull2,1 + Zllu — fl3

m Basis pursuit problem (LASSO)

. A
min [[x[l1 + | Ax — b3

Linear support vector machine

LA .
iy 3wl + 32 max (0,1 =5 ((w. ) + 1)
i=
m General linear programming problems

. Ax
min (c,x), s.t. { X

IV
o

SIAM Imaging 2012




Ty I
Grazm POLYTECHNIQUE

Primal, dual, primal-dual
The real power of convex optimization comes through duality

Recall the convex conjugate:
F*(.y) = maX<X7.y> - F(X) )
xeX
we can transform our initial problem

)r(nei)rg F(Kx) + G(x) (Primal)
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xeX yeyYy

SIAM Imaging 2012




Ty I
Grazm POLYTECHNIQUE

Primal, dual, primal-dual
The real power of convex optimization comes through duality

Recall the convex conjugate:
F*(.y) = maX<X7.y> - F(X) )
xeX
we can transform our initial problem

rxneiQ F(Kx) + G(x) (Primal)

min max(Kx y)+ G(x) — F*(y) (Primal-Dual)
xeX yeyYy

rpeag*(F*(yHG*(*K*y)) (Dual)
There is a primal-dual gap
G(x,y) = F(Kx) + G(x) + (F*(y) + G (=K"y))

that vanishes if and only if (x,y) is optimal
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Optimality conditions
We focus on the primal-dual formulation:

i K —F*
minmax (Kx, y) + G(x) )

We assume, there exists a saddle-point (%X, 7) € X x Y which satisfies the
Euler-Lagrange equations

{K)? —9F*(9) 3 0

K*9y +06G(%) > 0

Example for a saddle-point of a convex-concave function
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Known algorithms

Many standard algorithms to solve the considered class of problems:

m Classical Arrow-Hurwicz method [Arrow-Hurwicz, '58]
m Extragradient-methods [Korpelevich '76, Popov '80]
= Douglas-Rachford Splitting [Mercier-Lions '79]

m Alternating direction method of multipliers Globinski, Marroco '75]
[Gabay, Mercier '76] [Eckstein, Bertsekas '89], [Goldstein, Osher '09]

= Many more algorithms for special cases: [Nesterov '03], [Daubechies,
Defrise, De Mol '04], [Combettes, Pesquet, '08], [Beck, Teboulle '09],
[Raguet, Fadili, Peyré, '11]
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A first-order primal-dual algorithm

Proposed in a series of papers: [P., Cremers, Bischof, Chambolle, '09],
[Chambolle, P., '10], [P., Chambolle, '11]

Initialization: Choose T,X € Sy4, 6 € [0,1], (x°,y°) € X x Y.
Iterations (n > 0): Update x", y" as follows:

x™ (I+T8G)_1(x" —TK"y")
y" = (I ZOF) TNy + TK (™ (x"T — x™))

Alternates gradient descend in x and gradient ascend in y

Linear extrapolation of iterates of x in the y step

m T, X can be seen as preconditioning matrices

SIAM Imaging 2012




Ty I
Grazm POLYTECHNIQUE

A first-order primal-dual algorithm

Proposed in a series of papers: [P., Cremers, Bischof, Chambolle, '09],
[Chambolle, P., '10], [P., Chambolle, '11]

Initialization: Choose T, % € Si4, 8 € [0,1], (x°,y°) € X x Y.
Iterations (n > 0): Update x", y" as follows:

x™ (I+T8G)_1(x" —TK"y")
y" = (I ZOF) TNy + TK (™ (x"T — x™))

Alternates gradient descend in x and gradient ascend in y

Linear extrapolation of iterates of x in the y step

m T, X can be seen as preconditioning matrices

Can be derived from a pre-conditioned ADMM algorithm

Can be seen as a relaxed Arrow-Hurwicz scheme

Can be seen as an approximate extragradient scheme
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Relations to the proximal point algorithm

m Recall the proximal point algorithm

0e T ™)+ 2, (x"" =x"), n>0
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Relations to the proximal point algorithm

m Recall the proximal point algorithm
0e T(x"“) + A;l(X"H —x"), n>0

m The iterations of the primal-dual algorithm can be rewritten as

(9G(X"+1) + K*yn+1 Xn+1 —xn
0e ( aF*(yn-H) — Kxntl +M yn+1 —yn , n > 0

T71 7K>k
M= [ —0K 7! }
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Relations to the proximal point algorithm

m Recall the proximal point algorithm
0e T(x”“) + A;l(x"H —x"), n>0

m The iterations of the primal-dual algorithm can be rewritten as

(9G(X"+1) + K*yn+1 Xn+1 —xn
0e ( OF* (yt1) — Kxnt1 +M yrl_yn | n>0

T1 _K*
M= [ —0K 7! }

m This is exactly the proximal point algorithm, but with a norm in M.
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Relations to the proximal point algorithm

m Recall the proximal point algorithm
0e T(x”“) + )\,Tl(x"Jrl —x"), n>0

m The iterations of the primal-dual algorithm can be rewritten as

QG(XWH) + K*yn+1 Xn+1 —xn
0e ( OF* (yt1) — Kxnt1 +M yrl_yn | n>0

T1 _K*
M= [ —0K 7! }

This is exactly the proximal point algorithm, but with a norm in M.

Convergence of the proximal point algorithm is ensured if M is symmetric
and positive definite
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Convergence

Let 0 =1, T and ¥ symmetric positive definite maps satisfying

IZZKTE? < 1,

then the primal-dual algorithm converges to a saddle-point.
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The algorithm gives different convergence rates on different problem classes
[Chambolle, P., '10]

m F* and G nonsmooth: O(1/n)
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Convergence

Let 0 =1, T and ¥ symmetric positive definite maps satisfying

IZZKTE? < 1,

then the primal-dual algorithm converges to a saddle-point.

The algorithm gives different convergence rates on different problem classes
[Chambolle, P., '10]

m F* and G nonsmooth: O(1/n)
® F* or G uniformly convex: O(1/n%)

m F* and G uniformly convex: O(w"), w < 1

m Coincides with so far best known rates of first-order methods
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Extensions
= Since the primal-dual algorithm is in principle a proximal point algorithm,
we can perform an additional overrelaxation [Gol'shtein, Tret'yakov '79]
"= (1+ToG) H (x"—TKTy")
= (I + TOF*)~! (y” FEK(2x™ — x"))
(X", y ™) = (R YR (X = X,y )

[T

X
n+
y

where v € [0, 1]

m Speeds up the convergence in many cases.
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Extensions

= Since the primal-dual algorithm is in principle a proximal point algorithm,
we can perform an additional overrelaxation [Gol'shtein, Tret'yakov '79]

"= (14+ToG) ™t (x"—TKTy")

X
Yy = (1 + ToF) (y” FEK(2x™ — x"))
n n n+i  n+l n+l n  nt+l n
(Y™ = (XM y ) (X = X"y )
where v € [0, 1]
m Speeds up the convergence in many cases.

m The algorithm has recently been generalized by Laurent Condat in case
the function G(x) can be written as

6(x) = Gi(x) + Ga(x)

where Gi(x) is convex, proper, |.s.c. but Gx(x) is differentiable with
Lipschitz continuous gradient

® Has advantages in case there is some smoothness in the problem.
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Effect of the overrelaxation
Application to the ROF model using the accelerated O(1/n?) algorithm

10° :

-4
10 : ‘
10° 10" 10° 10° 10*

m No overrelaxation: v = 0, 1050 iterations
m Overrelaxation: v = 0.95, 700 iterations
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a-preconditioning

m |t is important to choose the preconditioner such that the prox-operators
are still easy to compute
m Restrict the preconditioning matrices to diagonal matrices
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a-preconditioning

m It is important to choose the preconditioner such that the prox-operators
are still easy to compute
m Restrict the preconditioning matrices to diagonal matrices

Let T = diag(71,...7n) and X = diag(o1,...,0m).
T = . @ = 1
X Kl T T L [Kigle
then for any a € [0, 2]
Lo 1= KT ||
=2 KTz = =1
x€X, x#0 HX”
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a-preconditioning

m It is important to choose the preconditioner such that the prox-operators
are still easy to compute
m Restrict the preconditioning matrices to diagonal matrices

Let T = diag(71,...7n) and X = diag(o1,...,0m).
P S B S
X Kl T T L [Kigle
then for any a € [0, 2]
Lo 1= KT ||
|Z2 KT = T o L
xex 0 |IX]

m The parameter « can be used to vary between pure primal (o = 0) and
pure dual (o = 2) preconditioning
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a-preconditioning

m It is important to choose the preconditioner such that the prox-operators
are still easy to compute

m Restrict the preconditioning matrices to diagonal matrices

Let T = diag(71,...7n) and X = diag(o1,...,0m).

1 1
= s 0T = o
>y K2 i 1Kl

Ul

7—1‘ =
then for any a € [0, 2]

I KT |2 = .
xex,xt0 ||l

m The parameter « can be used to vary between pure primal (o = 0) and
pure dual (o = 2) preconditioning

m It turns out that for & = 0, the primal-dual algorithm is equivalent to the
alternating step method [Eckstein "89]
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Relations to matrix scaling

m The a-preconditioner tries to normalize the row- and column norms of the
matrix K.

SIAM Imaging 2012

15 / 27



Ty

ECOLE
POLYTECHNIQUE

Relations to matrix scaling

m The a-preconditioner tries to normalize the row- and column norms of the
matrix K.

m This technique is known as matrix scaling or matrix binormalization
[Livne, Golub, '04], [Bradeley '10]
m Given a symmetric n X n matrix A, find a diagonal scaling matrix

D = diag(dh, ..., d,) such that D2 AD? has row and column 2-norms equal
to one
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m The a-preconditioner tries to normalize the row- and column norms of the
matrix K.

m This technique is known as matrix scaling or matrix binormalization
[Livne, Golub, '04], [Bradeley '10]

m Given a symmetric n X n matrix A, find a diagonal scaling matrix

D = diag(dh, ..., d,) such that D2 AD? has row and column 2-norms equal
to one

m This is equivalent finding a positive solution to the equations

> diAldi=1,i=1.n

j=1
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Relations to matrix scaling

m The a-preconditioner tries to normalize the row- and column norms of the
matrix K.

m This technique is known as matrix scaling or matrix binormalization
[Livne, Golub, '04], [Bradeley '10]
m Given a symmetric n X n matrix A, find a diagonal scaling matrix

D = diag(dh, ..., d,) such that D2 AD? has row and column 2-norms equal
to one

m This is equivalent finding a positive solution to the equations

n
2 .
> diAldi=1,i=1.n
j=1
m Extensions to general matrices are discussed but most theoretical results
hold only in the symmetric case
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Left-right-preconditioning

. 1,1
m For the rectangular case we require that 2 K'T'2 should have row- and
column 2-norms as close as possible to one
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Left-right-preconditioning

. 1,1
m For the rectangular case we require that 2 K'T'2 should have row- and
column 2-norms as close as possible to one

Optimized diagonal left-right preconditioners can be computed via
m n 2 n m 2
.>f5‘in.>oZ <Z oi(Ki )’ — 1) +y <Z oi(Kij)’rj — 1>
i T = j=1 \i=1

m Can be solved via alternating minimization (slow)

m Finally, we have to rescale T and X such that

IS2KTE <1

SIAM Imaging 2012
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Linear programming

= Many applications of LP relaxations in computer vision and machine
learning

m LP program in inequality form

min c'x s.t. Ax<b, x>0,

= Preconditioned primal-dual algorithm

xkt1 = PIOj[0,00) (xk —T(ATy* + c))
Y = projpg ooy (v* + Z(ARX* = x¥) = b)) ,

SIAM Imaging 2012
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A (simple) 2D example

Consider the following 2D linear program

c=(-1,-1)", A= (_22%/3 f1> , b=(20/3,20)"

primal
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No preconditioning (14030 iterations)

primal
20

15

10

0.8

0.6

0.4

0.2

0 0.5 1

0.2

0.1

0.2
0.1

-0.1

-0.2

tau
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a-preconditioning (o = 0) (910 iterations)

primal tau

20

5 05

10 0
5 -05
20 5 o0 5 10

dual sigma

1

0.8 0.5
0.6
0
0.4
0.2 -05
0
0 0.5 1

-1 -05 0 0.5 1
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a-preconditioning (a = 1) (880 iterations)

primal tau

20
5 05
10 0
5 -05
0
10 -5 0 5 10

dual sigma

1

0.8 0.2
0.6
0
0.4
0.2 -0.2
0
0 0.5 1

-0.4 -0.2 0 0.2 0.4

SIAM Imaging 2012

21 /27



Ty P
Grazm POLYTECHNIQUE

a-preconditioning (a = 2) (4350 iterations)

primal tau

20
15 0.5
10 0
5 -05

0

-10 -5 0 5 10 -1 -05 0 0.5 1
dual sigma

1
0.1

0.8
0.05

0.6
0

0.4
-0.05

0.2
-0.1

0

0 0.5 1 -0.1 0 0.1
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Left-right-preconditioning (190 iterations)

primal tau

20
15 5
10 0
5 -5

0

-10 -5 0 5 10 -10 -5 0 5 10
dual sigma

1
0.8 0.05

0.6
0

0.4
0.2 -0.05

0

0 0.5 1 -0.1 -0.05 0 0.05 0.1
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Linear programming, further examples

IP PD P-PD
sc50b | 0.01s 1.75s 0.49s
densecolumn | 0.17s | 268.51s | 0.61s

Table: Comparison of of IP, PD and P-PD on two standard LP test problems.

. sc50b N densecolumns
10 e - . 10° pooooooos Y TT T y
10°
I 10'
10°
—P-PD)|
Jl=--pD
10
10 10° 10 10°
Iterations Iterations
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Graph cuts
m Graph cuts are widely used in computer vision
Can be written as a weighted total variation energy [Chambolle, '05]
min [|[Dyulle, + (u,w") , st.0<u <1,
= Preconditioned priﬁwal-dual algorithm
ykHl — projo (uk L T(DTy* — w"))
yt = Proji_1 1 (Yk + (D (2u - ”k))) )

m Comparison

MAXFLOW PD P-PD | P-PD-GPU
0.160s 15.75s | 8.56s 0.045s
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Continuous Potts model

m The Continuous Potts model [Chambolle, Cremers, P. '05] with k phases
can be written as a convex problem

K
min max E (Duy, qi) + (ui, i)
u€S qeB ey

where S is the simplex constraint and B is an interection of non-local ¢,
balls.
m Comparison

PD P-PD Speedup

Synthetic (3 phases) | 221.71s | 75.65s 2.9

Synthetic (4 phases) | 1392.02s | 538.83s 2.6
Natural (8 phases) | 592.85s | 113.76s 5.2
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Conclusion

= Preconditioned primal-dual algorithm for convex saddle point problems
with known structure

Equivalent to the proximal point algorithm in a particular norm

Different choices for diagonal preconditioning

Applications to non-smooth problems (LP, graph cuts, Potts model, ...)

SIAM Imaging 2012

27 /27



Ty I
Grazm POLYTECHNIQUE

Conclusion

= Preconditioned primal-dual algorithm for convex saddle point problems
with known structure

m Equivalent to the proximal point algorithm in a particular norm
m Different choices for diagonal preconditioning

m Applications to non-smooth problems (LP, graph cuts, Potts model, ...)

m lterative update of the preconditioners involving also information from F
and G

m Accelerated algorithm performs some kind of scalar preconditioning -
relations need to be understood better

m Can we improve the convergence rate factor?
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Conclusion

= Preconditioned primal-dual algorithm for convex saddle point problems
with known structure

m Equivalent to the proximal point algorithm in a particular norm
m Different choices for diagonal preconditioning

m Applications to non-smooth problems (LP, graph cuts, Potts model, ...)

m lterative update of the preconditioners involving also information from F
and G

m Accelerated algorithm performs some kind of scalar preconditioning -
relations need to be understood better

m Can we improve the convergence rate factor?

Thank you for your attention!
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