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The proximal point algorithm

Consider the problem of finding a x in a Hilbert space such that T (x) 3 0,
where T is a maximal monotone operator.

The proximal point algorithm: [Martinet ’70], [Rockafellar ’76]

Choose a x0 and generate the sequence {xn} for each n ≥ 0 via

0 ∈ T (xn+1) + λ−1
n (xn+1 − xn)

The proximal point algorithm can be written as [Minty ’62]

xn+1 = (I + λnT )−1(xn) ,

where (I + λnT )−1 is the resolvent operator.

Let F (x) be a proper, l.s.c. convex function and T (x) = ∂F (x), then the
algorithm reads

xn+1 = arg min
x

F (x) +
1

2λn
‖x − xn‖2

2
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The proximal point is O(1/n)

Convergence of the proximal point algorithm in case of summable errors
have been proven [Rockafellar ’76] in and in case of non-summable errors
recently in [Zaslavski ’11]

Moreover, if λn+1 ≤ λn, one has [Dong ’12]

‖xn+1 − (I + λn+1T )−1(xn+1)‖2
2 ≤ ‖xn − (I + λnT )−1(xn)‖2

2

from which follows that

‖xn − (I + λnT )−1(xn)‖2
2 ≤ O(1/n)

Unfortunately, computing the resolvent is often as difficult as solving the
problem

However, in case T (x) can be written as sum of two operators each with
simple to compute resolvents, things will change...
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A class of problems

Let us consider the following class of structured convex optimization problems

min
x∈X

F (Kx) + G(x) ,

K : X → Y is a linear and continuous operator from a Hilbert space X to
a Hilbert space Y and F , G are convex, proper, l.s.c. functions.

Note that the subdifferential of this problem is the sum of two operators

T (x) = K∗∂F (Kx) + ∂G(x)

Main assumption: F , G are “simple” in the sense that they have easy to
compute resolvent operators:

(I + ∂F )−1(p̂) = arg min
p

‖p − p̂‖2

2λ
+ F (p)

(I + ∂G)−1(x̂) = arg min
x

‖x − x̂‖2

2λ
+ G(x)

It turns out that many standard problems can be cast in this framework.
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Some examples

The ROF model

min
u
‖∇u‖2,1 +

λ

2
‖u − f ‖2

2 ,

Basis pursuit problem (LASSO)

min
x
‖x‖1 +

λ

2
‖Ax − b‖2

2

Linear support vector machine

min
w,b

λ

2
‖w‖2

2 +
n∑

i=1

max (0, 1− yi (〈w , xi 〉+ b))

General linear programming problems

min
x
〈c, x〉 , s.t.

{
Ax = b
x ≥ 0
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Primal, dual, primal-dual

The real power of convex optimization comes through duality

Recall the convex conjugate:

F ∗(y) = max
x∈X
〈x , y〉 − F (x) ,

we can transform our initial problem

min
x∈X

F (Kx) + G(x) (Primal)

min
x∈X

max
y∈Y
〈Kx , y〉+ G(x)− F ∗(y) (Primal-Dual)

max
y∈Y
− (F ∗(y) + G∗(−K∗y)) (Dual)

There is a primal-dual gap

G(x , y) = F (Kx) + G(x) + (F ∗(y) + G∗(−K∗y))

that vanishes if and only if (x , y) is optimal
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Optimality conditions

We focus on the primal-dual formulation:

min
x∈X

max
y∈Y
〈Kx , y〉+ G(x)− F ∗(y)

We assume, there exists a saddle-point (x̂ , ŷ) ∈ X × Y which satisfies the
Euler-Lagrange equations {

Kx̂ − ∂F ∗(ŷ) 3 0

K∗ŷ + ∂G(x̂) 3 0

Example for a saddle-point of a convex-concave function
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Known algorithms

Many standard algorithms to solve the considered class of problems:

Classical Arrow-Hurwicz method [Arrow-Hurwicz, ’58]

Extragradient-methods [Korpelevich ’76, Popov ’80]

Douglas-Rachford Splitting [Mercier-Lions ’79]

Alternating direction method of multipliers Globinski, Marroco ’75]
[Gabay, Mercier ’76] [Eckstein, Bertsekas ’89], [Goldstein, Osher ’09]

Many more algorithms for special cases: [Nesterov ’03], [Daubechies,
Defrise, De Mol ’04], [Combettes, Pesquet, ’08], [Beck, Teboulle ’09],
[Raguet, Fadili, Peyré, ’11]
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A first-order primal-dual algorithm

Proposed in a series of papers: [P., Cremers, Bischof, Chambolle, ’09],
[Chambolle, P., ’10], [P., Chambolle, ’11]

Initialization: Choose T,Σ ∈ S++, θ ∈ [0, 1], (x0, y 0) ∈ X × Y .

Iterations (n ≥ 0): Update xn, yn as follows:{
xn+1 = (I + T∂G)−1(xn − TK∗yn)

yn+1 = (I + Σ∂F ∗)−1(yn + ΣK(xn+1 + θ(xn+1 − xn)))

Alternates gradient descend in x and gradient ascend in y

Linear extrapolation of iterates of x in the y step

T, Σ can be seen as preconditioning matrices

Can be derived from a pre-conditioned ADMM algorithm

Can be seen as a relaxed Arrow-Hurwicz scheme

Can be seen as an approximate extragradient scheme
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Relations to the proximal point algorithm

Recall the proximal point algorithm

0 ∈ T (xn+1) + λ−1
n (xn+1 − xn) , n ≥ 0

The iterations of the primal-dual algorithm can be rewritten as

0 ∈
(

∂G(xn+1) + K∗yn+1

∂F∗(yn+1)− Kxn+1

)
+ M

(
xn+1 − xn

yn+1 − yn

)
, n ≥ 0

M =

[
T−1 −K∗

−θK Σ−1

]

This is exactly the proximal point algorithm, but with a norm in M.

Convergence of the proximal point algorithm is ensured if M is symmetric
and positive definite
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Convergence

Theorem

Let θ = 1, T and Σ symmetric positive definite maps satisfying

‖Σ
1
2 KT

1
2 ‖2 < 1 ,

then the primal-dual algorithm converges to a saddle-point.

The algorithm gives different convergence rates on different problem classes
[Chambolle, P., ’10]

F ∗ and G nonsmooth: O(1/n)

F ∗ or G uniformly convex: O(1/n2)

F ∗ and G uniformly convex: O(ωn), ω < 1

Coincides with so far best known rates of first-order methods
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Extensions

Since the primal-dual algorithm is in principle a proximal point algorithm,
we can perform an additional overrelaxation [Gol’shtein, Tret’yakov ’79]

xn+ 1
2 = (I + T∂G)−1

(
xn − TKT yn

)
yn+ 1

2 = (I + Σ∂F ∗)−1
(

yn + ΣK(2xn+ 1
2 − xn)

)
(xn+1, yn+1) = (xn+ 1

2 , yn+ 1
2 ) + γ(xn+ 1

2 − xn, yn+ 1
2 − yn) .

where γ ∈ [0, 1[

Speeds up the convergence in many cases.

The algorithm has recently been generalized by Laurent Condat in case
the function G(x) can be written as

G(x) = G1(x) + G2(x)

where G1(x) is convex, proper, l.s.c. but G2(x) is differentiable with
Lipschitz continuous gradient

Has advantages in case there is some smoothness in the problem.
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Effect of the overrelaxation
Application to the ROF model using the accelerated O(1/n2) algorithm
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γ = 0
γ = 0.95

No overrelaxation: γ = 0, 1050 iterations

Overrelaxation: γ = 0.95, 700 iterations
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α-preconditioning

It is important to choose the preconditioner such that the prox-operators
are still easy to compute
Restrict the preconditioning matrices to diagonal matrices

Lemma

Let T = diag(τ1, ...τn) and Σ = diag(σ1, ..., σm).

τj =
1∑m

i=1 |Ki,j |2−α
, σi =

1∑n
j=1 |Ki,j |α

then for any α ∈ [0, 2]

‖Σ
1
2 KT

1
2 ‖2 = sup

x∈X , x 6=0

‖Σ
1
2 KT

1
2 x‖2

‖x‖2
≤ 1 .

The parameter α can be used to vary between pure primal (α = 0) and
pure dual (α = 2) preconditioning
It turns out that for α = 0, the primal-dual algorithm is equivalent to the
alternating step method [Eckstein ’89]
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It is important to choose the preconditioner such that the prox-operators
are still easy to compute
Restrict the preconditioning matrices to diagonal matrices

Lemma

Let T = diag(τ1, ...τn) and Σ = diag(σ1, ..., σm).

τj =
1∑m

i=1 |Ki,j |2−α
, σi =

1∑n
j=1 |Ki,j |α

then for any α ∈ [0, 2]

‖Σ
1
2 KT

1
2 ‖2 = sup

x∈X , x 6=0

‖Σ
1
2 KT

1
2 x‖2

‖x‖2
≤ 1 .
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Relations to matrix scaling

The α-preconditioner tries to normalize the row- and column norms of the
matrix K .

This technique is known as matrix scaling or matrix binormalization
[Livne, Golub, ’04], [Bradeley ’10]

Given a symmetric n × n matrix A, find a diagonal scaling matrix

D = diag(d1, ..., dn) such that D
1
2 AD

1
2 has row and column 2-norms equal

to one

This is equivalent finding a positive solution to the equations

n∑
j=1

diA
2
i,jdj = 1 , i = 1...n

Extensions to general matrices are discussed but most theoretical results
hold only in the symmetric case
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Left-right-preconditioning

For the rectangular case we require that Σ
1
2 KT

1
2 should have row- and

column 2-norms as close as possible to one

Optimized diagonal left-right preconditioners can be computed via

min
σi>0,τj>0

m∑
i=1

(
n∑

j=1

σi (Ki,j)
2τj − 1

)2

+
n∑

j=1

(
m∑
i=1

σi (Ki,j)
2τj − 1

)2

Can be solved via alternating minimization (slow)

Finally, we have to rescale T and Σ such that

‖Σ
1
2 KT

1
2 ‖2 ≤ 1
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Linear programming

Many applications of LP relaxations in computer vision and machine
learning

LP program in inequality form

min cT x s.t. Ax ≤ b , x ≥ 0 ,

Preconditioned primal-dual algorithm{
xk+1 = proj[0,∞)

(
xk − T(AT y k + c)

)
y k+1 = proj[0,∞)

(
y k + Σ(A(2xk+1 − xk)− b)

)
,
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A (simple) 2D example

Consider the following 2D linear program

c = (−1,−1)T , A =

(
−20/3 1

20 −1

)
, b = (20/3, 20)T

−10 −5 0 5 10
0
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No preconditioning (14030 iterations)
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α-preconditioning (α = 0) (910 iterations)
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α-preconditioning (α = 1) (880 iterations)
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α-preconditioning (α = 2) (4350 iterations)
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Left-right-preconditioning (190 iterations)
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Linear programming, further examples

IP PD P-PD
sc50b 0.01s 1.75s 0.49s

densecolumn 0.17s 268.51s 0.61s

Table: Comparison of of IP, PD and P-PD on two standard LP test problems.
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Graph cuts

Graph cuts are widely used in computer vision
Can be written as a weighted total variation energy [Chambolle, ’05]

min
u
‖Dwu‖`1 + 〈u,wu〉 , s.t. 0 ≤ u ≤ 1 ,

Preconditioned primal-dual algorithm{
uk+1 = proj[0,1]

(
uk + T(DT

w y k − wu)
)

y k+1 = proj[−1,1]

(
y k + Σ(Dw (2uk+1 − uk))

)
,

Comparison

MAXFLOW PD P-PD P-PD-GPU
0.160s 15.75s 8.56s 0.045s
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Continuous Potts model

The Continuous Potts model [Chambolle, Cremers, P. ’05] with k phases
can be written as a convex problem

min
u∈S

max
q∈B

k∑
l=1

〈Dul , ql〉+ 〈ul , fl〉 ,

where S is the simplex constraint and B is an interection of non-local `2

balls.

Comparison

PD P-PD Speedup
Synthetic (3 phases) 221.71s 75.65s 2.9
Synthetic (4 phases) 1392.02s 538.83s 2.6

Natural (8 phases) 592.85s 113.76s 5.2
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Conclusion

Preconditioned primal-dual algorithm for convex saddle point problems
with known structure

Equivalent to the proximal point algorithm in a particular norm

Different choices for diagonal preconditioning

Applications to non-smooth problems (LP, graph cuts, Potts model, ...)

Iterative update of the preconditioners involving also information from F
and G

Accelerated algorithm performs some kind of scalar preconditioning -
relations need to be understood better

Can we improve the convergence rate factor?

Thank you for your attention!
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