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Compressed sensing and -lets

Natural images are highly compressible in -lets:

Image 1.5% wavelet compressed image

⇒ -lets are widely used sparsifying transforms in compressed sensing for
imaging problems.
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Compressed sensing setup

Standard setup:

• x = (x1, . . . , xN)> ∈ CN be an unknown image

• A ∈ Cm×N is a sensing matrix

• y = Ax + e are measurements, where ‖e‖2 ≤ η
• Φ ∈ CN×N is an orthonormal sparsifying transformation

Reconstruction algorithm:

min
z∈CN

‖Φ∗z‖1 subject to ‖Az − y‖2 ≤ η. (?)

Recovery guarantees: Subject to appropriate conditions on A (e.g. RIP),
if x̂ is a minimizer of (?) and σs(·) is the best s-term approximation error,

‖x − x̂‖2 ≤ C1
σs(Φ∗x)√

s
+ C2η.
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Sparsity is invariant under permutations

Let P : {1, . . . ,N} → {1, . . . ,N} be a permutation. Given x ∈ CN ,
define the permuted image

x̃ = ΦPΦ∗x .

Example: CS reconstruction using DB4 wavelets and m = 8192 random
Gaussian measurements with N = 256× 256

Original image x Permuted image x̃
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Sparsity is invariant under permutations

Let P : {1, . . . ,N} → {1, . . . ,N} be a permutation. Given x ∈ CN ,
define the permuted image

x̃ = ΦPΦ∗x .

Example: CS reconstruction using DB4 wavelets and m = 8192 random
Gaussian measurements with N = 256× 256

CS recon, Err=31.54% Permuted CS recon, Err=31.51%
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Beyond sparsity and incoherence

Conclusion: CS with incoherent measurements is suboptimal for natural
images. It recovers all objects in the space

Σs =
{
x ∈ CN : ‖Φ∗x‖0 ≤ s

}
,

exactly, and this includes too many unphysical images.

New approach:

• Work with a smaller class of structured sparse objects.

• Don’t use incoherent measurements. Modify the sensing matrix A to
exploit structured sparsity.
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Sparsity in levels

Wavelet bases can be decomposed into dyadic scales. Let

0 = M0 < M1 < . . . < Mr = N,

be such that the kth scale corresponds to indices {Mk−1 + 1, . . . ,Mk}.
Define the sparsity in the kth scale as

sk = |{j ∈ {Mk−1 + 1, . . . ,Mk} : cj 6= 0}| ,

where c = Φ∗x . Define the set of sparse in levels objects as

Σs,M =
{
x ∈ CN : |{j ∈ {Mk−1 + 1, . . . ,Mk} : cj 6= 0}| ≤ sk

}
,

where s = (s1, . . . , sr ) and M = (M1, . . . ,Mr ).

Objective: Find a sensing matrix A that promotes sparsity in levels when
using l1 minimization.
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Natural images are asymptotically sparse in levels

We would a sensing matrix that will work for ‘most’ images. Fortunately,
this is possible due to the property of asymptotic sparsity.

Wavelet coefficients are not just sparse, i.e. s =
∑r

k=1 sk � N, but they
are asymptotically sparse in levels, i.e. x ∈ Σs,M, and

sk/(Mk −Mk−1)→ 0, k →∞.
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Left: image. Right: percentage of wavelet coefficients per scale > 10−3.
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Other work

Structured sparsity has been widely considered in CS.

• Tsaig & Donoho (2006), Eldar (2009), He & Carin (2009), Baraniuk et al.

(2010), Krzakala et al. (2011), Duarte & Eldar (2011), Som & Schniter

(2012), Renna et al. (2013), Chen et al. (2013) + others

Existing algorithms:

• Model-based CS, Baraniuk et al. (2010)

• Bayesian CS, Ji, Xue & Carin (2008), He & Carin (2009)

• Turbo AMP, Som & Schniter (2012)

Although the particulars are different, these are based on similar ideas:

• Exploit the connected tree structure of wavelet coefficients

• Use standard measurements, e.g. random Gaussians

• Modify the recovery algorithm

However, there are issues with accuracy and efficiency. See later.
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Designing measurements for sparsity in levels

Write c = (c(1), . . . , c(r))>, where c(k) is the set of coefficients at the kth

scale. ‘Ideal’ measurements would be

y (k) = B(k)c(k), B(k) ∈ Cmk×(Mk−Mk−1),

where B(k) is incoherent. Hence

B = AΦ = diag
(
B(1), . . . ,B(r)

)
,

is block diagonal.

However, we are only allowed to design A, not B. Nevertheless, this
suggests that good sensing matrices A for structured sparsity should yield
approximate block diagonality of B = AΦ with incoherent blocks.
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The Fourier transform of wavelets

Let φl,k be the Haar wavelet (for simplicity) with scale l and translation
k . Then

|Fφl,k(ω)|2 . 2−j2−|j−l|, 2j−1 ≤ |ω| ≤ 2j .

⇒ Wavelets give a natural division of Fourier space into dyadic bands

W0 = {0, 1}, Wj = {−2j + 1, . . . ,−2j−1} ∪ {2j−1 + 1, . . . , 2j}.

Only wavelets at scale l ≈ j have large spectrum within the band Wj .
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Local incoherence of Fourier meaurements with wavelets

This means that the blocks U(j,l) of the matrix U = Ψ∗Φ, where Ψ is the
DFT, have the following structure:

• Diagonal incoherence: µ(U(j,j)) . 2−j

• Exponential off-diagonal decay: µ(U(j,l)) . 2−|j−l|µ(U(j,l))

Where µ(V ) = maxi,j |Vij |2.

The absolute values of U

11 / 25



Multilevel random subsampling

Pick mk indices from Wk uniformly at random:

Ωk ⊆Wk , |Ωk | = mk .

Let A ∈ Cm×N , where m =
∑

k mk , be the subsampled DFT with rows
corresponding to indices Ω1 ∪ . . . ∪ Ωr .

Choosing the mk ’s. One can show that to recover an (s,M)-sparse image
it suffices to take

mk & sk +
∑
l 6=k

2−
|k−l|

2 sl .

This is a consequence of a general theory for CS based on local
coherence in levels, sparsity in levels and multilevel random subsampling:

• BA, Hansen, Poon & Roman, Breaking the coherence barrier: a new

theory for compressed sensing, arXiv:1302.0561, 2013.
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Multilevel random subsampling
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Image Asymptotic sparsity of coefficients

Matrix U Subsampling map in 2D
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Flip test revisited

Original image x Permuted image x̃

Permuted CS recon, Err=31.51%

Random Gaussian measurements: incoherent with wavelets, recover all
sparse coefficients equally well.
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Flip test revisited

CS recon, Err=31.54% Permuted CS recon, Err=31.51%

Permuted CS recon, Err=31.51%

Random Gaussian measurements: incoherent with wavelets, recover all
sparse coefficients equally well.
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Flip test revisited

CS recon, Err=10.96% Permuted CS recon, Err=99.3%

Permuted CS recon, Err=31.51%

Multilevel subsampled Fourier measurements: Asymptotically incoherent
with wavelets, recover only asymptotically sparse coefficients.
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Numerical example

Example: 12.5% measurements using DB4 wavelets.

256×256 512×512 1024×1024

Err = 41.6% Err = 25.3% Err = 11.6%

First case: Gaussian random measurements.
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Numerical example

Example: 12.5% measurements using DB4 wavelets.

256×256 512×512 1024×1024

Err = 21.9% Err = 10.9% Err = 3.1%
(41.6%) (25.3%) (11.6%)

Second case: Subsampled Fourier measurements.
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Efficient compressive imaging

Example: The Berlin cathedral with 15% sampling at various resolutions
using Daubechies-4 wavelets. Comparison between random Bernoulli and
subsampled multilevel subsampled Hadamard measurements.

Experiments performed using SPGL1 on an Intel i7-3770K, 32 GB RAM
and an Intel Xeon E7, 256 GB RAM.
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Efficient compressive imaging

Resolution: 128× 128

Random Bernoulli Hadamard Original image

RAM (GB): 0.3 RAM (GB): < 0.1
Speed (it/s): 12.4 Speed (it/s): 26.4
Rel. Err. (%): 26.4 Rel. Err. (%): 17.9
Time: 25s Time: 10.1s

Hello
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Efficient compressive imaging

Resolution: 256× 256

Random Bernoulli Hadamard Original image

RAM (GB): 4.8 RAM (GB): < 0.1
Speed (it/s): 1.31 Speed (it/s): 18.1
Rel. Err. (%): 22.4 Rel. Err. (%): 14.7
Time: 4m27s Time: 18.6s

Hello
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Efficient compressive imaging

Resolution: 512× 512

Random Bernoulli Hadamard Original image

RAM (GB): 76.8 RAM (GB): < 0.1
Speed (it/s): 0.15 Speed (it/s): 4.9
Rel. Err. (%): 19.0 Rel. Err. (%): 12.2
Time: 42m Time: 1m13s

Bernoulli only possible on the Xeon 256 GB RAM.
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Efficient compressive imaging

Resolution: 1024× 1024

Random Bernoulli Hadamard Original image

RAM (GB): 1229 RAM (GB): < 0.1
Speed (it/s): 0.0161 Speed (it/s): 1.07
Rel. Err. (%): ? Rel. Err. (%): 10.4
Time: 6h36m Time: 3m45s

Bernoulli not possible. Grey values are extrapolated.
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Efficient compressive imaging

Resolution: 2048× 2048

Random Bernoulli Hadamard Original image

RAM (GB): 19661 RAM (GB): < 0.1
Speed (it/s): 1.78e-3 Speed (it/s): 0.17
Rel. Err. (%): ? Rel. Err. (%): 8.5
Time: 2d14h Time: 28m

Bernoulli not possible. Grey values are extrapolated.
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Efficient compressive imaging

Resolution: 4096× 4096

Random Bernoulli Hadamard Original image

RAM (GB): 314,573 RAM (GB): < 0.1
Speed (it/s): 1.98e-4 Speed (it/s): 0.041
Rel. Err. (%): ? Rel. Err. (%): 6.6
Time: 25d1h Time: 1h37m

Bernoulli not possible. Grey values are extrapolated.
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Efficient compressive imaging

Resolution: 8192× 8192

Random Bernoulli Hadamard Original image

RAM (GB): 5,033,165 RAM (GB): < 0.1
Speed (it/s): 2.19e-5 Speed (it/s): 0.0064
Rel. Err. (%): ? Rel. Err. (%): 3.5
Time: 238d1h Time: 8h30m

Bernoulli not possible. Grey values are extrapolated.
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Example with other -lets

Example: 6.25% subsampling at 2048×2048 resolution. Comparing
wavelets, curvelets, contourlets and shearlets.

2048×2048 image 256×256 crop subsampling map

Note: The sampling pattern is not optimized to the sparsifying
transformation.
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Example with other -lets

wavelets curvelets

contourlets shearlets
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Comparison with other structured CS algorithms

Multilevel subsampling with Fourier/Hadamard matrices

• Use standard recovery algorithm (l1 minimization)

• Exploit asymptotic sparsity in levels structure in the sampling
process, e.g. Fourier/Hadamard

Other structured CS algorithms

• E.g. model-CS, Bayesian CS, Turbo AMP

• Use standard sensing matrices (random Gaussian/Bernoulli)

• Exploit connected tree structure by modifying the recovery algorithm
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Comparison: 12.5% sampling at 256× 256 resolution

Original `1 Gauss., Err = 15.7% Model-CS, Err = 17.9%

BCS, Err = 12.1% TurboAMP, Err = 17.7% Mult. Four., Err = 8.8%
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Comparison: 12.5% sampling at 256× 256 resolution

Original `1 Bern., Err = 41.2% Model-CS, Err = 41.8%

BCS, Err = 29.6% TurboAMP, Err = 39.3% Mult. Four., Err = 18.2%
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Multilevel Fourier with other sparsifying transformations

wavelets, Err = 18.2% curvelets, Err = 17.4%

shearlets, Err = 16.5% TV, Err = 17.6%
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Summary

1. Standard CS using incoherent sensing matrices, e.g. random
Gaussians, is highly suboptimal for imaging with -lets.

2. Images are not just sparse, but always possess a distinct asymptotic
sparsity in levels structure.

3. Such structure can be exploited using multilevel subsampling of
Fourier/Hadamard matrices.

4. These matrices are not incoherent with wavelets, but have a distinct
asymptotic incoherence structure.

5. By doing so, one obtains substantial improvements in accuracy and
computational efficiency over standard CS, and also outperforms other
structured CS algorithms.
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Final remarks

The majority of CS theory is based on sparsity and incoherence. This
work suggests more general concepts of sparsity in levels and local
coherence in levels are better suited in applications involving -lets.

• Moreover, these concepts naturally arise in many CS applications, due to

the specific measurements (e.g. medical imaging, microscopy,...).

A new CS theory: based on sparsity in levels, local coherence and
multilevel random subsampling. See

• BA, Hansen, Poon & Roman, Breaking the coherence barrier: a new

theory for compressed sensing, arXiv:1302.0561, 2013.

• As a corollary, provides the comprehensive recovery guarantees for CS in

the above applications.

Open problems: Take your favourite CS concept, e.g. RIP, instance
optimality, phase transitions, iterative algorithms,...., and generalize it to
sparsity with levels. Also, optimal sampling strategies, optimal
measurements, structured sampling + structured recovery,...
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