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Motivation : Limits of resolution in imaging

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

R

5(t—1) optical system h(t —7)

Diffraction imposes a fundamental limit on the resolution of optical systems



Aim

Estimation from data that have limited resolution

» Microscopy

» Astronomy

» Electronic imaging
» Medical imaging
» Signal processing
» Radar

» Spectroscopy

» Geophysics




Super-resolution

» Optics : Data-acquisition techniques to overcome the diffraction limit

» Image processing : Methods to upsample images onto a finer grid
while preserving edges and hallucinating textures

» This talk : Signal estimation from low-pass measurements
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Point sources

» In many applications signals of interest are point sources :

> Celestial bodies (astronomy)
» Fluorescent molecules (microscopy)
» Line spectra (spectroscopy, signal processing)
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measurement model

» This talk : Super-resolution via convex programming



Outline of the talk

Basic model

Estimation from noisy data



Basic model



Mathematical model

» Signal : superposition of Dirac measures with support T

X:Zajétj aje(i, tJ'ETC[O,l]
J

» Data : low-pass Fourier coefficients with cut-off frequency f.
y=JFcx

1
y(k) = / e 2T (db) =) _aje ™, ke Z [k <K
0 .
J



Compressed sensing vs super-resolution

Estimation of sparse signals from undersampled measurements suggests
connections to compressed sensing

Compressed sensing Super-resolution

bt A

spectrum interpolation spectrum extrapolation




Sparsity is not enough

Compressed sensing : measurement operator is well conditioned when
acting upon any sparse signal (restricted isometry property)

Signal Spectrum

Not the case in super-resolution !



Minimum separation

Definition : The minimum separation A of a discrete set T is

A= inf |t —t']
(t,t/)ET : t£t/




Total-variation norm

» Continuous counterpart of the /1 norm

> 1 x = 3, 36, then [[xlry = 3 |3

» Not the total variation of a piecewise-constant function



Total-variation norm

v

Continuous counterpart of the £; norm

If x = ZJ- ajoy; then [|x||1, = Zj |3l

Not the total variation of a piecewise-constant function

v

v

v

Formal definition : For a complex measure v
o0
1llry =sup Y [v(B))l,
j=1

(supremum over all finite partitions B; of [0, 1])



Estimation via convex programming

In a zero-noise limit, i.e. y = F x, we solve

min ||X||;y, subject to Fck =y,
X

over all finite complex measures X supported on [0, 1]
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Minimum separation

Point-spread function A =14\
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Rayleigh resolution distance

Ac/2 is the Rayleigh resolution limit
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Minimum separation

Point-spread function A =14\

Rayleigh resolution distance

Ac/2 is the Rayleigh resolution limit



Sketch of proof : Dual certificate

A sufficient condition for
X iy = Y e,
JeT JeT
to be the unique solution is that there exists g such that
1. q(t) = ZZ":_Q bre? ™t (low pass polynomial)
2. q(t;) = e'%, t; € T (interpolates the sign of the signal on T)

3. Jq(t)| <1, teTe

g is a subgradient of the TV norm at the signal x that is orthogonal to the
null space of the measurement operator



Sketch of proof : Dual certificate
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Problem : Magnitude of polynomial locally exceeds 1
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Estimation from noisy data

We assume additive noise with norm bounded by §
y=FXx+z
Our estimator is the solution to

min||X||;y subject to || FcXx —yl|, <0,
X



Estimation from noisy data

We assume additive noise with norm bounded by §
y=FXx+z
Our estimator is the solution to

min||X||;y subject to || FcXx —yl|, <0,
X

Metrics to quantify estimation accuracy :

1. Approximation error at a higher resolution
2. Support-detection error



Super-resolution factor : spectral viewpoint

VA IEATE
Super-resolution factor

SRF = —

ah| ™



Super-resolution factor : spatial viewpoint

Signal at a resolution A : convolution with a kernel ¢, of width A

| ANERVAY

Super-resolution factor

*
Il

SRF = <



Approximation at a higher resolution

At the resolution of the measurements

61, % (xest = )|, <0

How does the estimate degrade at a higher resolution ?



Approximation at a higher resolution

At the resolution of the measurements

61, % (xest = )|, <0

How does the estimate degrade at a higher resolution ?

Theorem [Candés, F. 2012]

If A > 2 /f. then the solution X to

min [[%]|ry  subject to || Fe% — yll, <&,
X

satisfies ||, >l<()“<—x)HL1 < SRF?§



Some comments

» Non-asymptotic results, whereas most theory for Prony-based methods
is asymptotic (convergence of sample autocorrelation matrices)

» Usual proof techniques from high-dimensional statistics do not apply

1. Conditions (restricted-isometry property, restricted-eigenvalue
condition, etc.) do not hold
2. Estimation takes place over a continuous domain

» Proofs are based on generalizations of the dual certificate for the
noiseless problem



Sketch of proof

We partition the unit interval into

NEAR := {t © mint— ] <0.1 Af} FAR := NEAR®
tjGT



Sketch of proof

e=X—x
We establish an approximate null-space property to bound

lerarllry S SRF?4

Controlling  ||(e* ¢x,) NgaR] |L < SRF?2§ is more challenging



Sketch of proof :  ||(e6x,) ngarll,, S SRF*9

We apply a Taylor expansion at each tj € T

ex g, (t) ~ex oy, (1) + (exon,) (8) (t— 1))

This yields the bound
/ e (dt)
|t—t;|<0.1 ¢

/ (t—t)e(de)
|t—t|<0.1 )¢

To complete the proof we show that both quantities < SRF? §

H(e*¢)‘f) NEARHL1 =< Z

tjET

L1
Af




Sketch of proof :  ||(e6x,) ngarll,, S SRF*9

Build low-pass polynomial g almost constant in NEAR so

Z /|ttj|<o.1 Af e (dt)

tJ'GT

~ (4 NEAR> €NEAR)

< (g, e)| + [{gFaR: €FAR)|



Sketch of proof :  ||(e6x,) ngarll,, S SRF*9

Because q is low-pass and both x and X are feasible

[(q, &)l < lall, | Fecell
< H]'-CX—Y||2+ Hy—fc§<||2
<26

We can show ||g]|, <1 so

(arar: erar)| < llall lleFarllTy S SRF?46

Z /|t-|go.1,\f e (dt)

tJ'GT

As a result

< {q,e)| + [{gFAR, €FAR)|

< SRF2§



Sketch of proof :  ||(e6x,) ngarll,, S SRF*9

Build low-pass polynomial g almost linear in NEAR and ||q||, < Ac

1
2.5,

teT

1
/ (t —tj) e(dt)| = —— (G NEAR> ENEAR)
|t—t;]<0.1 Af

< SRF?§



Example

Minimum separation : 1.5 A,
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Example
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Example

SNR 5 dB




Support-detection accuracy

» Original support : T

~

» Estimated support : T

Theorem [F. 2013]

For any t; € T, if |a;| > C10 there exists t; € T such that

[y

G-t <L _ Go
fe\ lail — Gi6

No dependence on the amplitude of the signal at other locations



Consequence

Robustness of the algorithm to high dynamic ranges
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SNR 20 dB (15 dB without the large spike)



Consequence

Robustness of the algorithm to high dynamic ranges
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@® Signal X Estimate

SNR 20 dB (15 dB without the large spike)
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Conclusion

Convex programming is a powerful tool for estimation from low-res data :

» Precise theoretical analysis

» Non-asymptotic stability guarantees

Things | haven't talked about :

» In 1D, infinite-dimensional problem can be solved without discretizing
» Other noise and signal models

Lots of work to do :
» Poisson noise
» Super-resolution of 2D curves

» Blind deconvolution : joint estimation of signal + point-spread function
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Practical implementation

» Primal problem :
m;in ||X|[fy subjectto F.x=y
Infinite-dimensional variable X (measure in [0, 1])
First option : Discretizing 4+ £1-norm minimization
» Dual problem :

max Re[y*0] subjectto |[|Fld||l <1, n:=2f+1
oeCn

Finite-dimensional variable &, but infinite-dimensional constraint

f: - Z akel27Tkt
k<|fc|

Second option : Solving the dual problem



Lemma : Semidefinite representation

The Fejér-Riesz Theorem and the semidefinite representation of polynomial
sums of squares imply that

[1Fe bl <1

is equivalent to

There exists a Hermitian matrix Q@ € C"™*" such that

Q a} = 1, j=0,
" >0, Qiitj =
[u 1 ; o, j=1,2,....n—1.

Consequence : The dual problem is a tractable semidefinite program



Support-locating polynomial

How do we obtain an estimator from the dual solution?

Dual solution vector : Fourier coefficients of low-pass polynomial that
interpolates the sign of the primal solution (follows from strong duality)

Idea : Use the polynomial to locate the support of the signal



Super-resolution via semidefinite programming
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Super-resolution via semidefinite programming

W

1. Solve semidefinite program to obtain dual solution




Super-resolution via semidefinite programming

2. Locate points at which corresponding polynomial has unit magnitude



Super-resolution via semidefinite programming

®
e Signal x Estimate

3. Estimate amplitudes via least squares
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